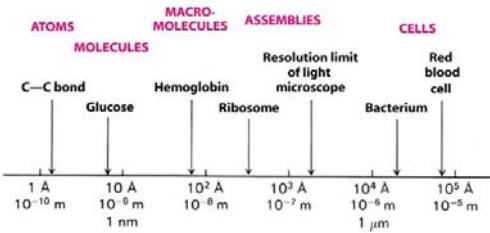
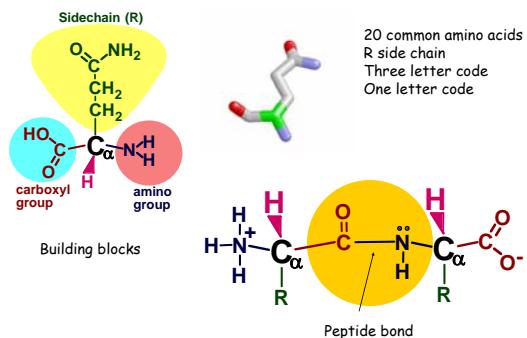


CY60004 Biophysical Chemistry

Structures of biological macromolecules (proteins and polynucleic acids);

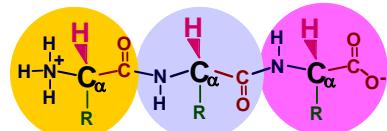

Molecular Mechanics: simulating macromolecular structure;

Spectroscopic (NMR, Fluorescence and Circular Dichroism) methods to study structure of proteins and DNA; solving macromolecular structures by X-ray diffraction; structural transitions in polypeptides, proteins and polynucleic acids.

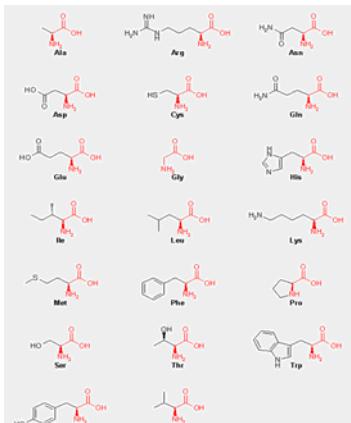

Interactions between macromolecules: thermodynamics of protein folding/stability by fluorescence and circular dichroism techniques.

Binding of small ligands by biological macromolecules: kinetics and energetics of protein-drug, protein-surfactant and DNA-drug interactions by fluorescence, CD and calorimetric methods.

Books :
Biophysical Chemistry, Parts I, II and III, Cantor and Schimmel
Principles of Physical Biochemistry, van Holde, Johnson and Ho



Amino acids



Protein Structure

- Peptide = a short chain of amino acids
- Polypeptide = a longer chain of amino acids
- Protein = a polypeptide that occurs in nature and folds into a defined three-dimensional structure

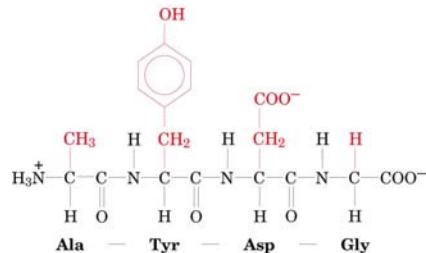
The beginning of the protein is known as the amino-terminus and the end of the protein is known as the carboxyl-terminus.

Amino Acid Characteristics

- Hydrophobicity
- Size
- Charge
- Secondary structure preference
- Aromaticity

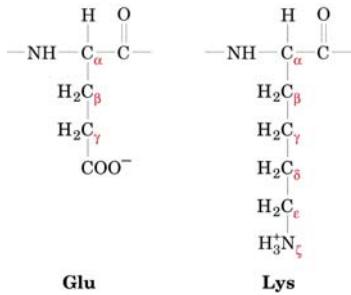
Special characteristics:

- bridge forming by cysteines,
- rigidity of prolines,
- titrating at physiological pH of histidine,
- flexibility of glycines


Properties and Conventions Associated with the Standard Amino Acids							
Amino acid	Abbreviated names	M_r	pK _a values			pI	Hydropathy index ^a
			pK_a (-COOH)	pK_a (-NH ₂)	pK_a (R group)		
Nonspolar, aliphatic R groups							
Glycine	Gly G	75	2.34	9.60	5.97	-0.4	7.2
Alanine	Ala A	89	2.34	9.69	6.01	1.8	7.8
Valine	Val V	117	2.32	9.62	5.97	4.2	6.6
Isoleucine	Ile I	111	2.36	9.60	5.98	3.8	9.1
Leucine	Leu I	131	2.36	9.68	6.02	4.5	5.3
Methionine	Met M	149	2.28	9.21	5.74	1.9	2.3
Aromatic R groups							
Phenylalanine	Phe F	165	1.83	9.15	5.48	-2.8	3.9
Tyrosine	Tyr Y	181	2.20	9.11	10.07	5.66	-1.3
Tryptophan	Trp W	201	2.38	9.39	5.89	-0.9	1.4
Polar, uncharged R groups							
Serine	Ser S	105	2.21	9.15	5.68	-0.8	6.8
Proline	Pro P	115	1.99	10.96	6.48	1.6	5.2
Threonine	Thr T	119	2.11	9.62	5.87	-0.7	5.9
Cysteine	Cys C	121	1.96	10.26	8.18	5.07	2.5
Asparagine	Asn N	132	2.02	8.80	5.41	-3.5	4.3
Glutamine	Gln Q	146	2.17	9.13	5.65	-3.5	4.2
Positively charged R groups							
Lysine	Lys K	146	2.18	8.95	10.53	9.74	-3.9
Histidine	His H	155	1.82	9.17	6.00	7.59	-3.2
Arginine	Arg R	174	2.17	9.04	12.48	10.76	-4.5
Negatively charged R groups							
Aspartate	Asp D	133	1.88	9.60	3.65	2.77	-3.5
Glutamate	Glu E	147	2.19	9.67	4.25	3.22	-3.5

^aA scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (− values) or a hydrophobic environment (+ values). See Chapter 12. From Kyte, J. & Doolittle, R.F. (1982) *J. Mol. Biol.* **157**: 105–132.

Average occurrence in over 1150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G.D., ed) Plenum Press, NY, pp. 599–623.


Nomenclature

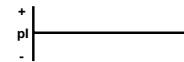
- Glx can be Glu or Gln
- Asx can be Asp or Asn
- Polypeptide chains are always described from the N-terminus to the C-terminus

Nomenclature

- Nonhydrogen atoms of the amino acid side chain are named in sequence with the Greek alphabet

ISOELECTRIC POINT (pI)

Definition: the pH at which a molecule carries no net electric charge


: using the Henderson-Hasselbalch equation

$$pI = \frac{1}{2}(pK_1 + pK_2)$$

: for amino acids
 $pK_1 = pK \alpha\text{-COOH}$
 $pK_2 = pK \alpha\text{-NH}_3^+$

Isoelectric Focusing

- separation of proteins according to charge
- pH gradient set up by ampholytes
- electric field applied such that one pole is positively charged and one pole negatively charged
- proteins migrate in the pH gradient until their net charge = 0 (isoelectric point)

Titration of glycine

Ionization of Amino Acids

$$\text{Equilibrium dissociation constant } K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}$$

Henderson-Hasselbach Equation

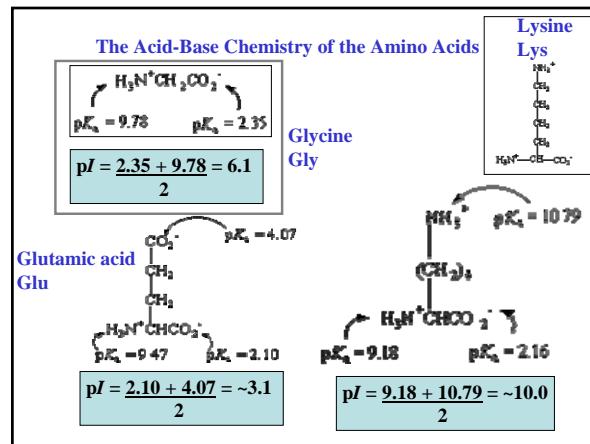
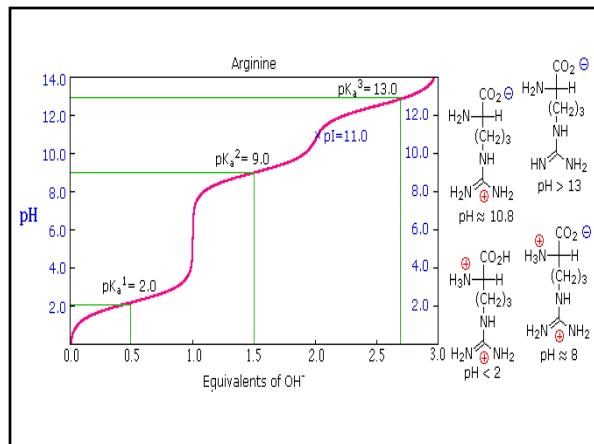
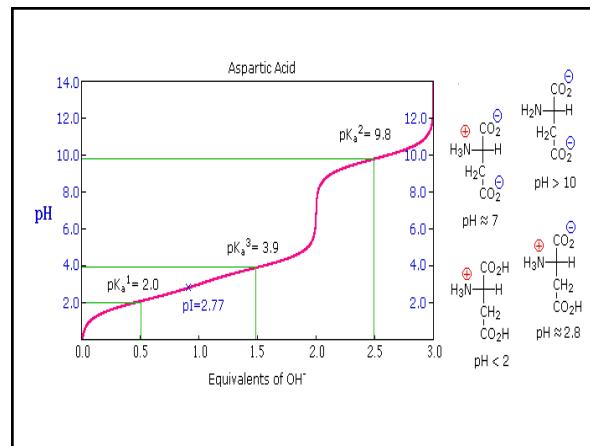
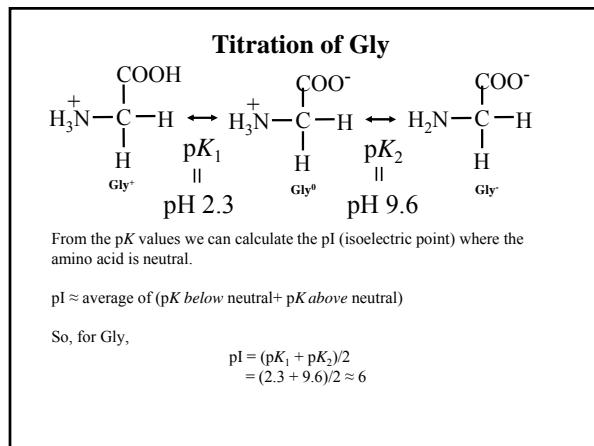
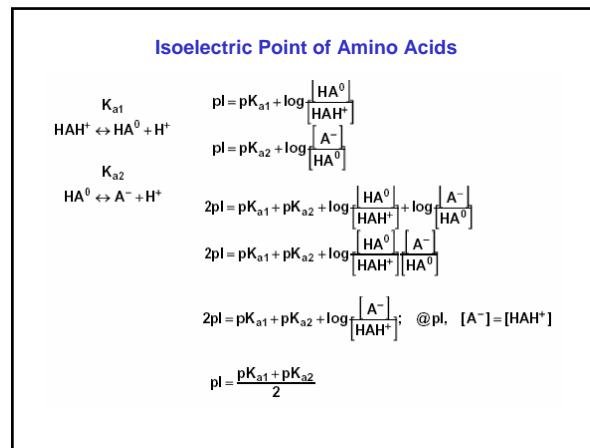
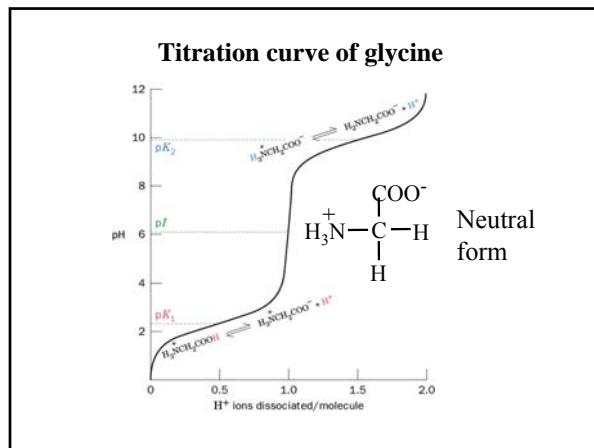
$$-\log[\text{H}^+] = -\log K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{pH} = pK_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{pH} = pK_a \text{ } @ \text{ } [\text{A}^-] = [\text{HA}]$$

Acid-base properties of amino acids

The dissociation of first proton from the α -carboxyl group is

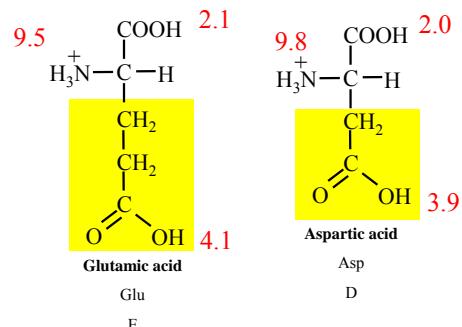






The dissociation of the second proton from the α -amino group

$$K_1 = \frac{[\text{Gly}^0][\text{H}_3\text{O}^+]}{[\text{Gly}^+]} \quad K_2 = \frac{[\text{Gly}^0][\text{H}_3\text{O}^+]}{[\text{Gly}^0]}$$

The pK_a 's of these two groups are far enough apart that they can be approximated by Henderson-Hasselbalch

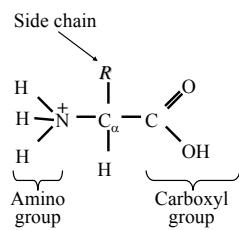
$$\text{pH} = pK_1 + \log \frac{[\text{Gly}^0]}{[\text{Gly}^+]} \quad \text{pH} = pK_2 + \log \frac{[\text{Gly}^0]}{[\text{Gly}^0]}$$

Henderson-Hasselbach Equation $-\log[H^+] = -\log K_a + \log \frac{[A^-]}{[HA]}$
 $pH = pK_a + \log \frac{[A^-]}{[HA]}$


Buffering zone = $pK \pm 1$ pH unit

At pH = pK , $[HA] = [A^-]$

At pH below pK , $[HA] > [A^-]$


At pH above pK , $[HA] < [A^-]$

Charged polar (acidic) side chains

The 5 Complex Amino Acids are:

Glutamic acid (Glu)

Aspartic acid (Asp)

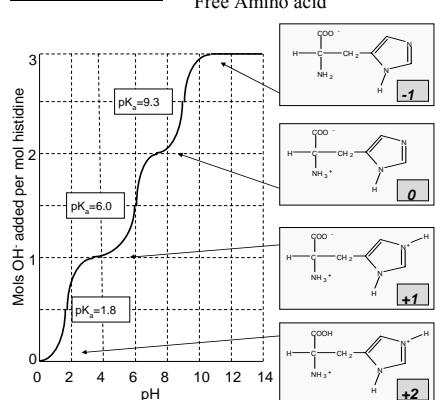
Lysine (Lys)

Arginine (Arg)

Histidine (His).

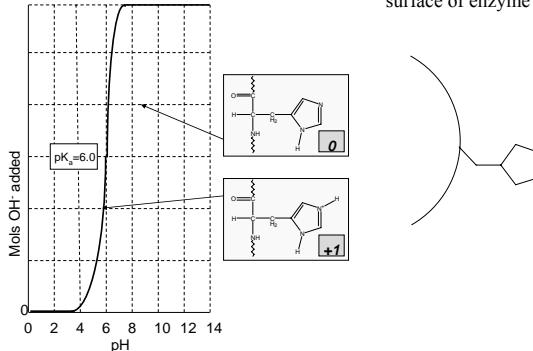
Each of these 5 amino acids has 3 ionizable groups \Rightarrow 3 pKs.

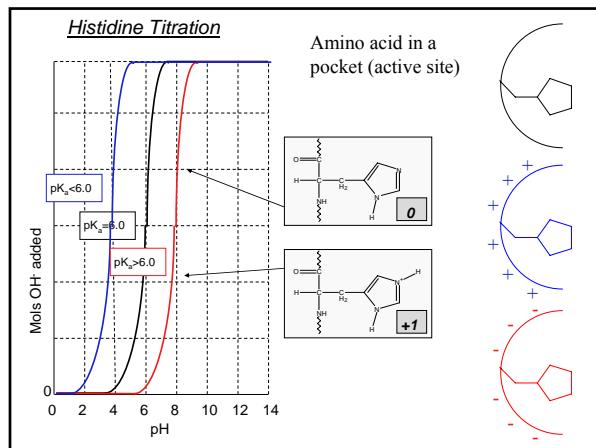
pI = average of (pK-below) + (pK-above)


where pK-below is the pK between AA+1 and AA0

and pK-above is the pK between AA0 and AA-1.

- His has 3 ionizing groups, alpha-carboxylic acid (pK 1.8),
- side-chain amino (pK 6.0) and alpha-amino (pK 9.2);
- His+2 goes to His+1 via pK 1.8;
- His+1 goes to His0 via pK 6.0;
- His0 goes to His-1 via pK 9.2.
- Therefore, pI = $(6.0 + 9.2)/2 = 7.6$.


Histidine Titration


Free Amino acid

Histidine Titration

Amino acid on surface of enzyme

1. Carboxylic acids ionize at acidic pH; ie. Carboxylic acids give up their protons at acid pHs.
2. Amino groups ionize at basic pH; ie. Amines give up their protons at basic or alkaline pHs.
3. Carboxylic acids near an amino group have a more acidic pK than isolated carboxylic acids.
4. Amino groups near a carboxylic acid have a more acidic pK than isolated amines.

For Ala-Lys, there are 3 ionizable groups:

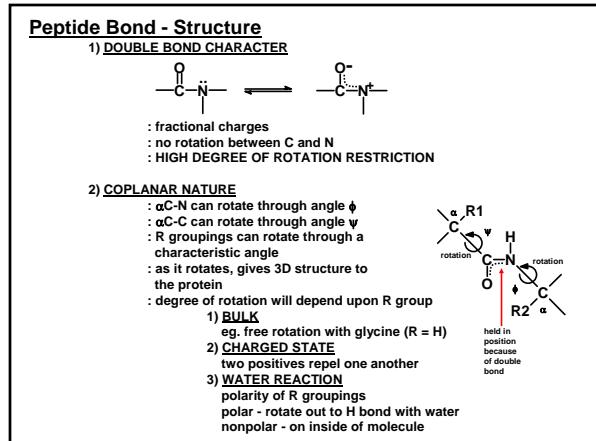
- 1) alpha-amino group contributed by Ala - assign pK 9.9.
- 2) alpha-carboxylate group from Lys - assign pK 2.2.
- 3) side chain amino group from Lys - assign pK 10.8.

	pH 1	pH 5	pH 7	pH 10	pH 12
α -amino					
α -carboxylate					
Side chain amino					
Net Charge					

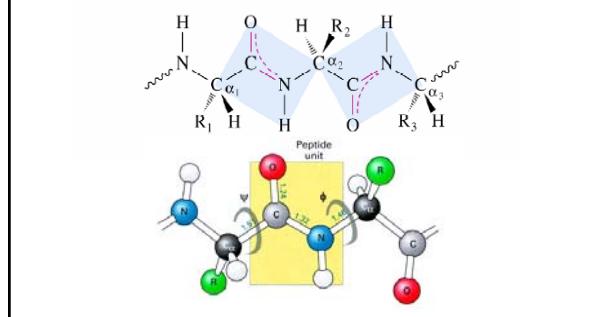
For the tetrapeptide: **Glu-Ala-Lys-Tyr**

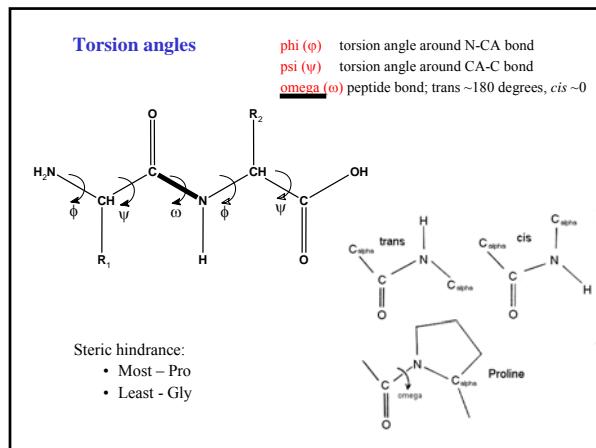
Write out the structure.

With the assigned pK values, determine the net charge at pH 1, 3, 5, 7, 10, 11. Calculate the pI of this tetrapeptide.

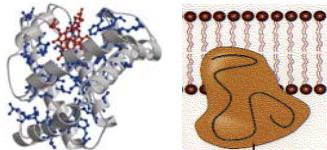

The pK values of the amino acids are:

Ala - 2.4, 9.9

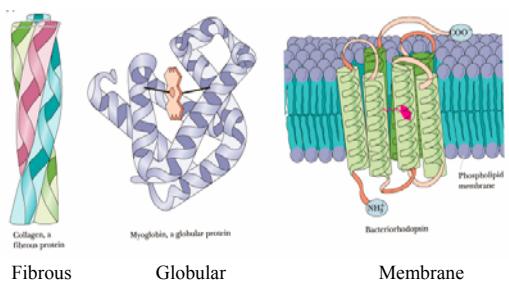

Glu - 2.1, 4.1, 9.5


Lys - 2.2, 9.2, 10.8

Tyr - 2.2, 9.7



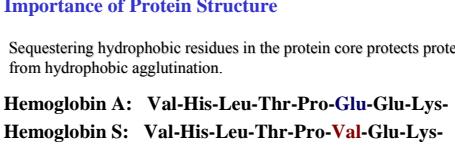
- Rotation around C-N bond is restricted due to the double-bond nature of the resonance hybrid form
- Peptide groups (blue planes) are therefore planar


Residue	Globular protein	Membrane protein
Non-polar V L I M F Y W	In interior Hydrophobic core	Surface – lipid anchor
Polar charged R K D E H	Surface Catalytic sites	Hydrophilic core
Polar neutral S T N Q Y W	H bond network	Inside surface – part of channel

Amino Acid Partitioning Into Membrane Regions	
Region	Amino Acids
Bulk water	Arg, Asn, Asp, Gln, Glu, His, Lys, Pro
Bulk water + interfacial	Ala, Cys, Gly, Ser, Thr
Interfacial	Tyr
Hydrophobic	Ile, Leu, Met, Phe, Trp, Val

Classes of Proteins

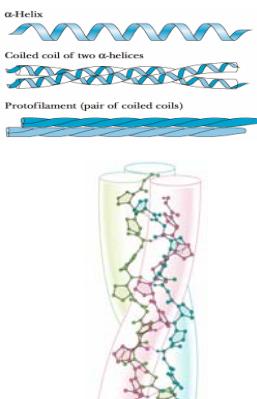
Based on structure and solubility, proteins can be grouped into three large classes:



Importance of Protein Structure

Sequestering hydrophobic residues in the protein core protects proteins from hydrophobic agglutination.

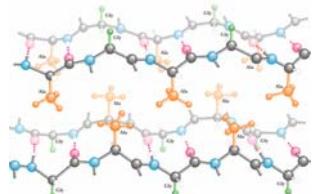
Hemoglobin A: Val-His-Leu-Thr-Pro-Glu-Glu-Lys


Hemoglobin S: Val-His-Leu-Thr-Pro-**Val**-Glu-Lys

The diagram illustrates the structure of hemoglobin. It shows a central cavity where hydrophobic residues (Val, His, Leu, Thr, Pro) are sequestered, protected from hydrophobic agglutination. The surrounding hydrophilic residues (Glu, Glu, Lys) are exposed to the aqueous environment. The electron micrograph on the left shows a cluster of red blood cells, some of which appear deformed or aggregated. The electron micrograph on the right shows a single red blood cell with a distinct, curved, and somewhat irregular shape, characteristic of sickle cell anemia.

Fibrous Proteins

- Fibrous proteins contain polypeptide chains organized parallel along a single axis, producing long fibers or large sheets.
- They are mechanically strong, play structural roles in nature;
- Difficult to dissolve in water;
 - α -Keratins and Collagen are examples of fibrous proteins



α -keratins are found in hair, fingernails, claws, horns and beaks;

- Sequence consists of long alpha helical rod segments capped with non-helical N- and C-termini

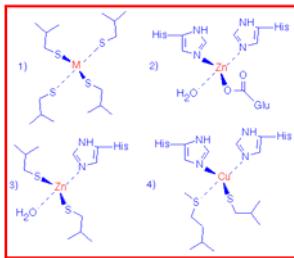
β -keratins are found in silk and consist of gly-ala repeat sequences;

- Ala is small and can be packed within the sheets



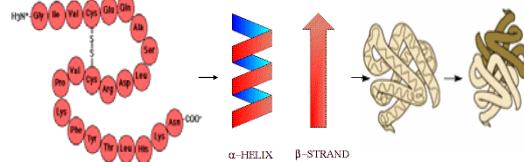
Globular Proteins

- Globular proteins are classified according to the type and arrangement of secondary structure


- Antiparallel alpha helix proteins
- Parallel or mixed beta sheet proteins
- Antiparallel beta sheet proteins

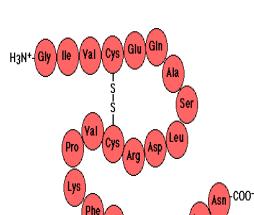
Conserved Globin Domains

adapted from Tgdm.pdb, Tecd.pdb, and Tmbd.pdb

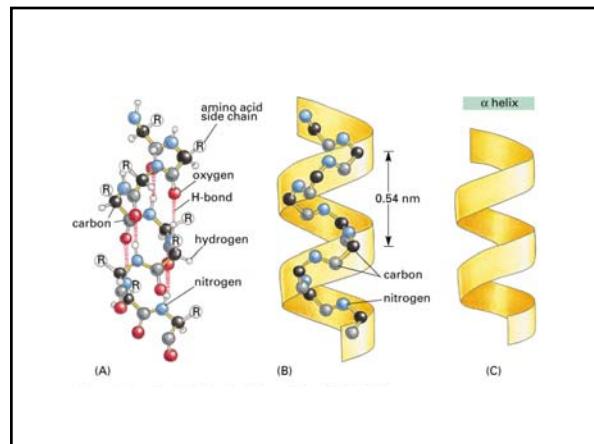
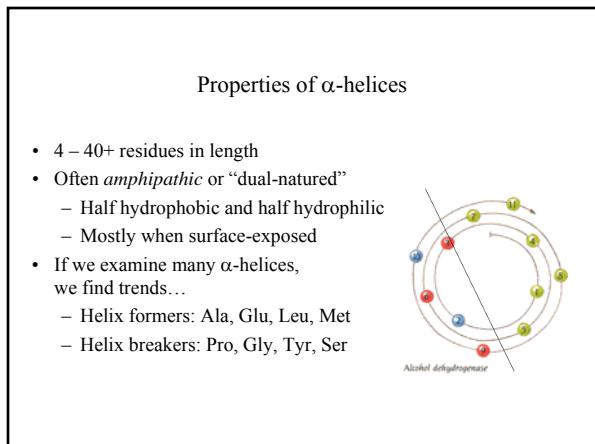
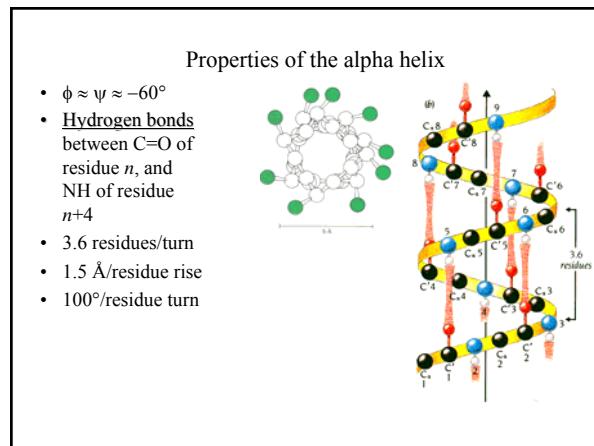
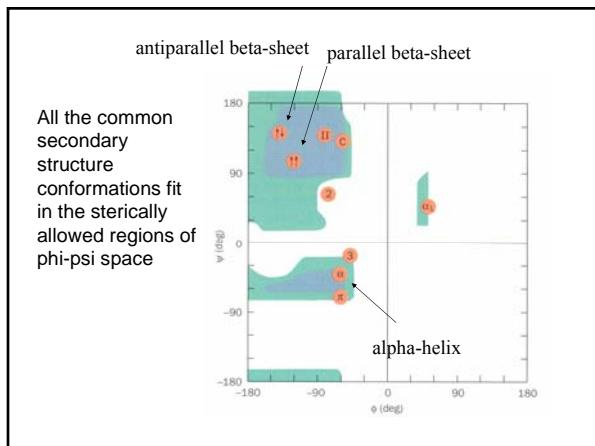
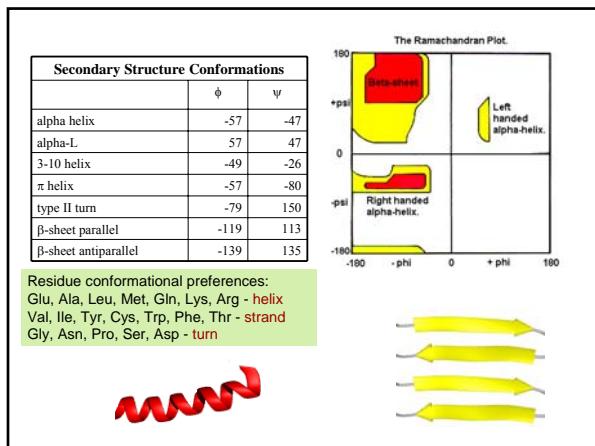

Metal binding sites examples

- 1) M is Fe (rubredoxin) or Zn (aspartate transcarbamoylase)
- 2) Carboxypeptidase A
- 3) Catalytic ion in liver alcohol dehydrogenase
- 4) Azurin and plastocyanin

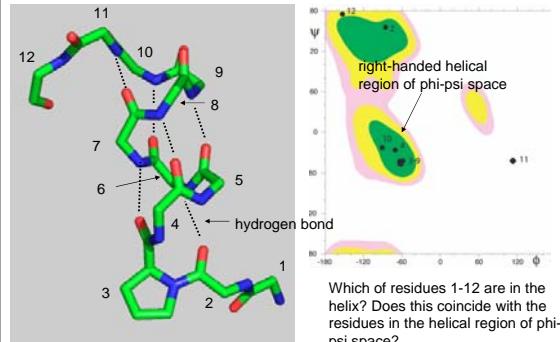
Protein Architecture


Primary structure (1°) : the amino acid sequence.
 Secondary structure (2°) : helices, sheets and turns.
 Tertiary structure (3°) : side chain packing in the 3-D structure.
 Quaternary structure (4°) : association of subunits.

Protein Structure






- Physical properties of protein that influence stability & therefore, determine its fold:
 - Rigidity of backbone
 - Amino acid interaction with water
 - Hydropathy index for side chains
 - Interactions among amino acids
 - Electrostatic interactions
 - Hydrogen bonds
 - S-S bonds
 - Volume constraints

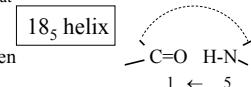
Primary Structure



Secondary Structure

- Two major types:
 - Alpha Helical Regions
 - Beta Sheet Regions
- Other classification schemes:
 - Turns
 - Transmembrane regions
 - Internal regions
 - External regions
 - Antigenic regions

the alpha-helix: repeating $i, i+4$ H-bonds

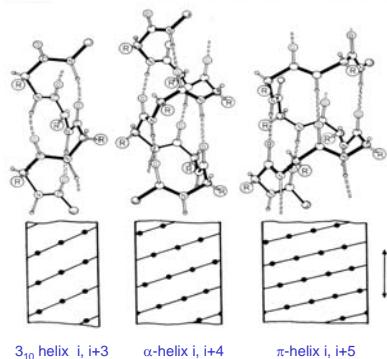


Helix nomenclature: α -helix example

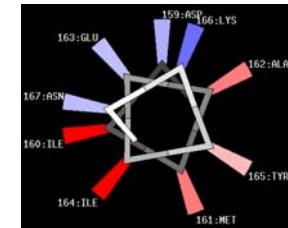
1 Hydrogen bond between
 $\text{C=O} \cdots \text{H-N}$
 (residue i) (residue $i+4$)
 $1 \leftarrow 5$ helix

2 Repeating unit:

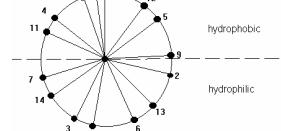
- 5 turns
- 18 residues per repeat



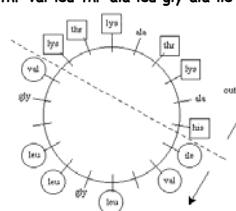
3 Loop formed between


- 13 atoms
- 3.6 residues per turn

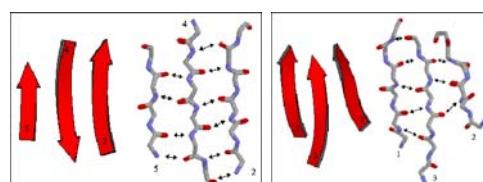
α helices extend with approximately 1.5 Angstrom per residue, 5.4 Angstrom per turn.



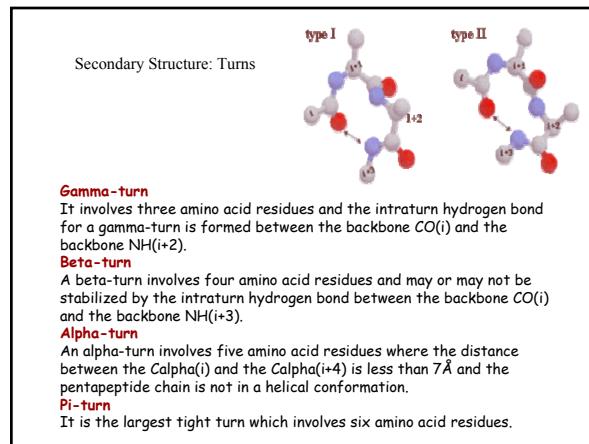
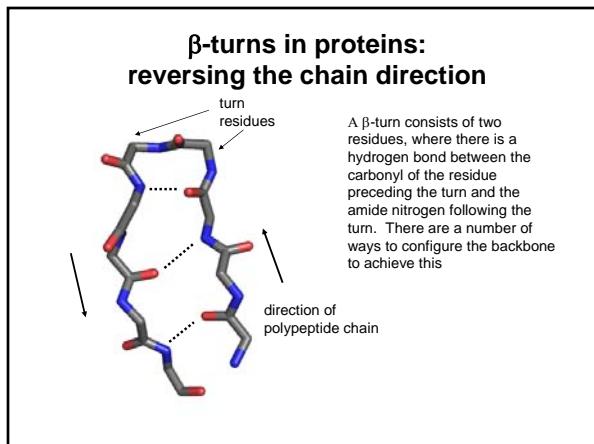
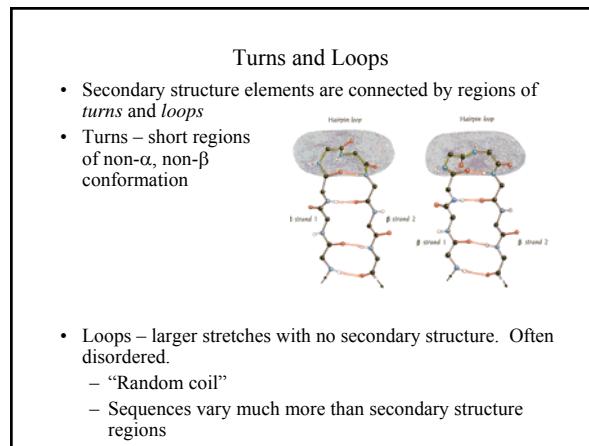
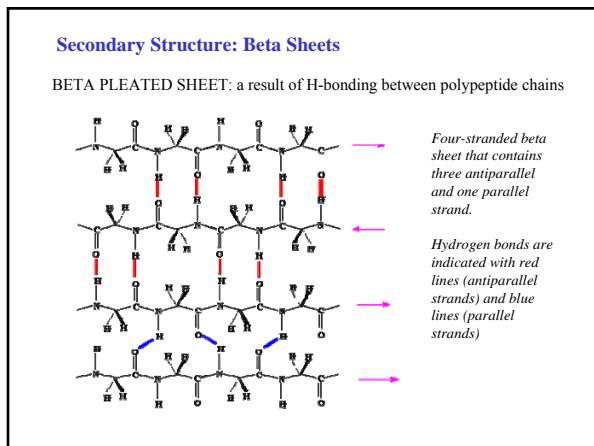
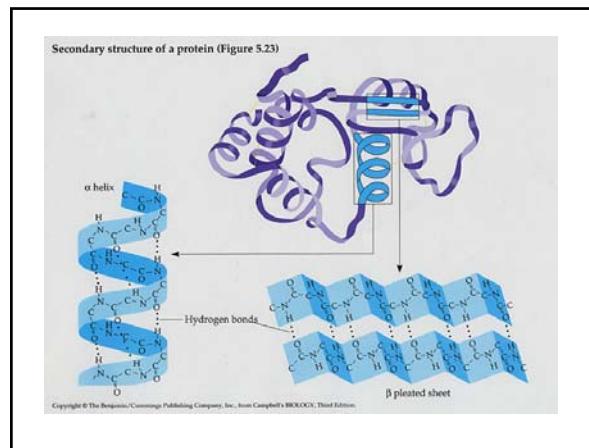
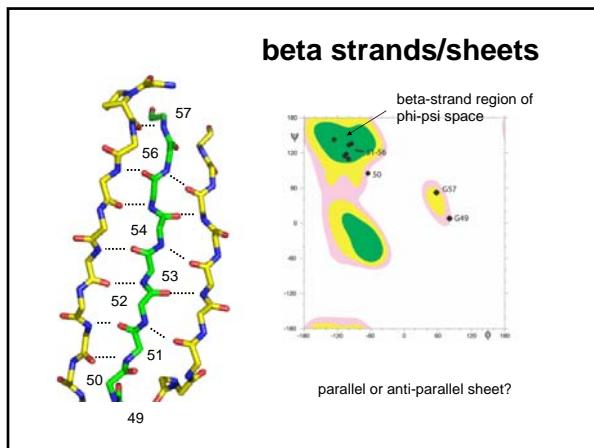
Helical Wheel



Helical Wheel


For each residue the rotation is 100°

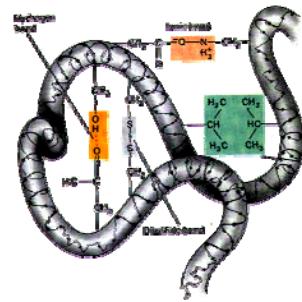
lys his gly val thr val leu thr ala leu gly ala ile leu lys lys

Beta Strands

phi(deg) psi(deg) omega(deg)

β strand -120 120 180

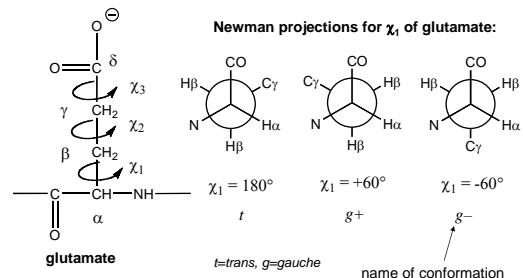


Tertiary Structure: Aggregation of individual protein.

1. Hydrophobic attraction: the close association attraction of hydrocarbon side-chains.
2. Ionic bond: between positively charged groups and negatively charged groups.
3. Hydrogen bonds
4. Disulfide bonds

A protein has size and shape as well as unique arrangement through hydrogen, ionic, hydrophobic and disulfide bonds.

Tertiary Structure of Protein

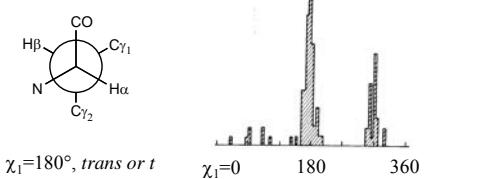


Side chain conformation

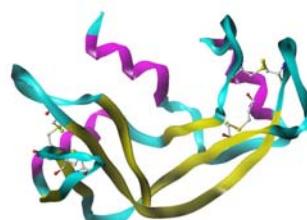
- side chains differ in their number of degrees of conformational freedom
- but side chains of very different size can have the same number of χ angles.

Residue	Side-chain angles $\chi_1, \chi_2, \chi_3, \chi_4, \delta, \epsilon, \zeta, \eta$						Atom position fixed by
	Atom	α	β	γ	δ	ϵ	
Gly	*						
Ala							
Pro							
Ser							
Cys							
Thr							
Val							
Ile							
Leu							
Asp							
Asn							
His							
Phe							
Tyr							
Trp							
Met							
Glu							
Gln							
Lys							
Arg							

Side chain conformations--canonical staggered forms

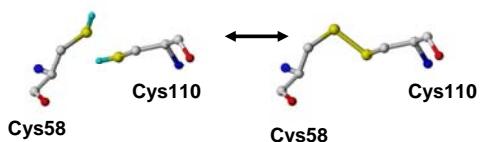
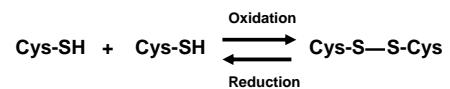


Side chain angles are defined moving outward from the backbone, starting with the N atom: so the χ_1 angle is $N-C\alpha-C\beta-C\gamma$, the χ_2 angle is $C\alpha-C\beta-C\gamma-C\delta$...

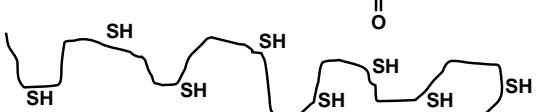

IUPAC nomenclature:
<http://www.chem.qmw.ac.uk/iupac/misc/biop.html>

Rotamers

- a particular combination of side chain torsional angles χ_1, χ_2 , etc. for a particular residue is known as a **rotamer**.
- for example, for aspartate, if one considers only the **canonical staggered forms**, there are nine (3^2) possible rotamers: g^+g , g^+g^- , g^-g , g^-g^- , t^+t , t^+t^- , t^-t , t^-t^-
- not all rotamers are equally likely.
- for example, valine prefers its t rotamer

Anfinsen's experiments, late 1950's through 1960's


Ribonuclease, an enzyme involved in cleavage of nucleic acids. Structure has a combination of α and β segments and four disulfide bridges

What are Disulfide Bridges?

Active,
native
structure

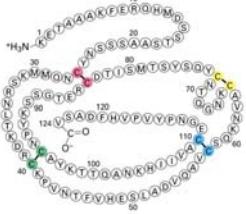
BME is reducing agent | add β -mercaptoethanol (BME)
Urea unfolds proteins | add urea, $\text{H}_2\text{N}-\text{C}(=\text{O})-\text{NH}_2$

Denatured, inactive, “random coil”, many conformations

- Native structure
- fully active
- 4 disulfide bond correct

Remove BME
Remove urea

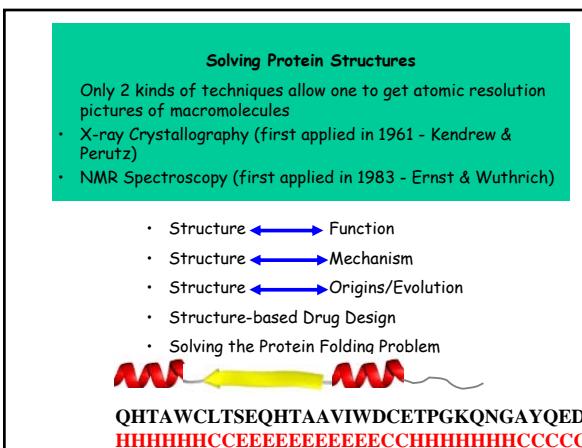
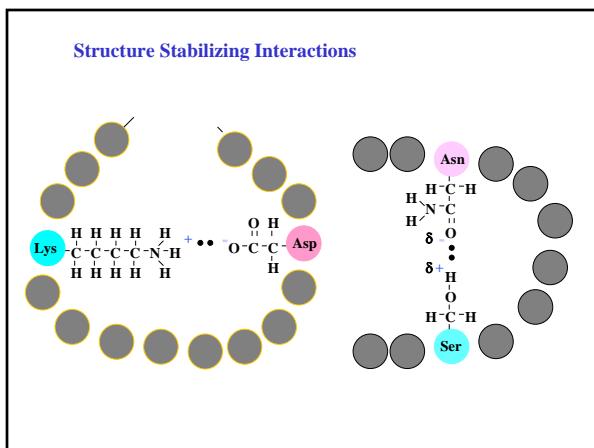
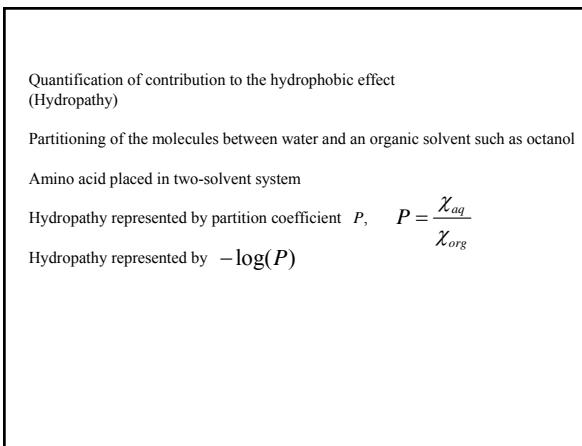
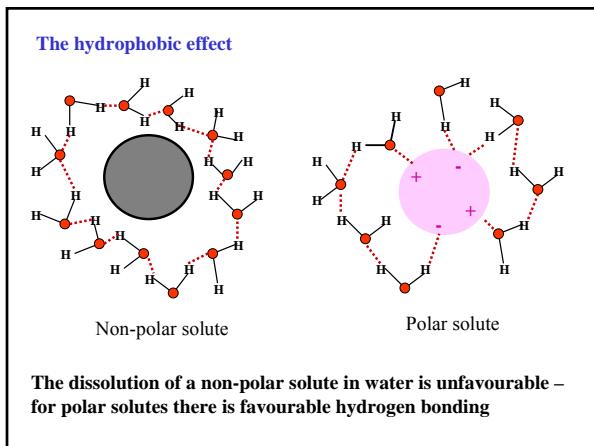
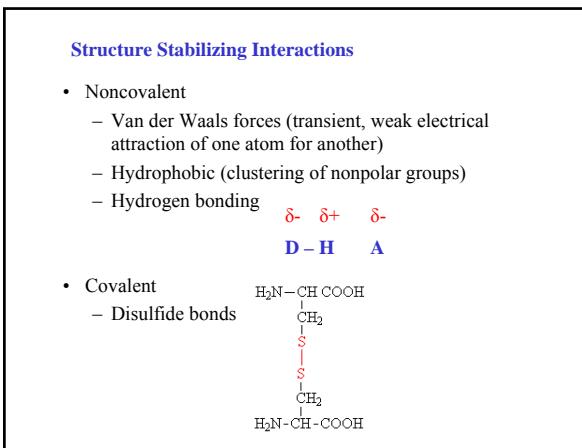
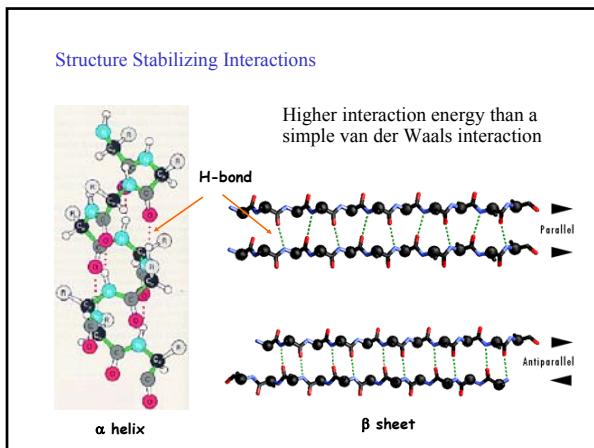
One Conformation



Mixture of 105 different conformations. 1% active

Sequence specifies structure

- Anfinsen's experiments
 - Denatured ribonuclease
 - Spontaneously regained enzymatic activity
 - Evidence that it re-folded to native conformation







The essential structure information is stored in the primary sequence of amino acids

The “native” structure of a protein is the form we find when we isolate that protein in an active state from a natural source.

If the protein loses that structure, by unfolding, or unwinding, it loses activity.
Therefore, native = folded
denatured = unfolded

The “native” structure is necessary to create the binding pockets that make up the active site of an enzyme.

Hydropathy plots

• An hydropathy plot is a graphical display of the **local hydrophobicity** of amino acid side chains in a protein.

• A positive value indicates local **hydrophobicity** and a negative value suggests a **water-exposed** region on the face of a protein.

• Hydropathy plots are generally most useful in predicting transmembrane segments and N-terminal secretion signal sequences.

Hydrophobicity scales

Kyte-Doolittle

Alanine	1.8
Arginine	-4.5
Asparagine	-3.5
Aspartic acid	-3.5
Cysteine	2.5
Glutamine	-3.5
Glutamic acid	-3.5
Glycine	-0.4
Histidine	-3.2
Isoleucine	4.5
Leucine	3.8
Lysine	-3.9
Methionine	1.9
Phenylalanine	2.8
Proline	-1.6
Serine	-0.8
Threonine	-0.7
Tryptophan	-0.9
Tyrosine	-1.3
Valine	4.2

A positive value indicates a **hydrophobic** residue and a negative value a **hydrophilic** residue

Hydropathy index

Hydropathy plots

Sliding Window Approach

Kyte-Doolittle

Calculate property for first sub-sequence

I L I K E I R

$$4.50 + 3.80 + 4.50 - 3.90$$

$$-3.50 + 4.50 - 4.50 = 5.40$$

$$= 5.4/7 = 0.77$$

Move to the next position

Alanine 1.8

Arginine -4.5

Asparagine -3.5

Aspartic acid -3.5

Cysteine 2.5

Glutamine -3.5

Glutamic acid -3.5

Glycine -0.4

Histidine -3.2

Isoleucine 4.5

Leucine 3.8

Lysine -3.9

Methionine 1.9

Phenylalanine 2.8

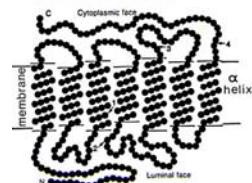
Proline -1.6

Serine -0.8

Threonine -0.7

Tryptophan -0.9

Tyrosine -1.3


Valine 4.2

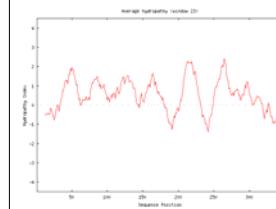
Hydropathy plots

- The window size can be changed.
- A small window produces "noisier" plots that more accurately reflect highly local hydrophobicity.

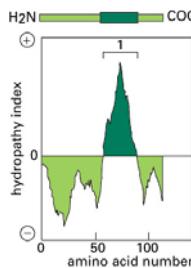
- A window of 9 or 11 is generally optimal for recognizing the long hydrophobic stretches that typify transmembrane stretches.

RHODOPSIN

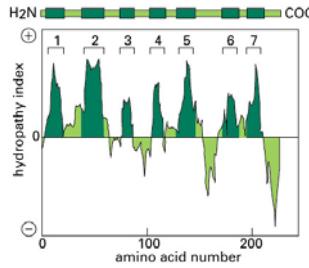
- In an α -helix the rotation is 100 degrees per amino acid
- The rise per amino acid is 1.5 Å
- To span a membrane of 30 Å approx. $30/1.5 = 20$ amino acids are needed


Transmembrane Helix Predictions

• Not many structures known of transmembrane helix proteins


• **Hydropathy analysis** can be used to locate possible transmembrane segments

• The main signal is a stretch of hydrophobic and helix-loving amino acids


Hydropathy plot for rhodopsin

(A) GLYCOPHORIN

(B) BACTERIORHODOPSIN

