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Static light scattering vs. Dynamic light scattering 

• Dynamic light scattering measures 
real-time intensities i(t), and thus 
dynamic properties 

diffusion coefficient 

(hydrodynamic radius) 

size distributions

• Static light scattering measures 
time-average intensities (mean 
square fluctuations) 

molecular weight 

radius of gyration 

second virial coefficient

How DLS Works:  Interference of Light

Brownian motion results in light intensities which fluctuate in time.

Constructive interference Destructive interference

The timescale of those intensity changes is a measure of the 
diffusion constant.
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Brownian motion is a phenomenon that is fundamental to this 
experiment. 

It describes the way in which very small particles move in fluid 
suspension, where the fluid consists of molecules much smaller than 
the suspended particles. 

The motion of suspended particles is random in nature, and arises 
from the cumulative effect of bombardment by the suspending 
medium’s molecules. 

Molecules in a liquid are constantly in motion, randomly bouncing 
off one another. As these molecules move around in the liquid, 
they are also bouncing off any suspended particles in a random 
manner, imparting a momentum to the suspended particles, the 
magnitude and direction of which fluctuate in time. 

It is the resulting ‘random walk’ behavior of the suspended 
particles that is called Brownian motion, and that randomness 
makes this experiment possible.
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Double Slit Experiment

screen

Coherent beam
Extra path length

+ +
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- The incident laser light is highly monochromatic (o)

- The scattered radiation will display a range of frequencies, due to 
the Doppler  shift caused by Brownian motion. 

- For particles moving away from the detector,  < o

- For particles moving toward the detector,  > o

- The technique is also called “quasi-elastic light scattering”, 
reflecting the apparent  change in frequency of the scattered 
radiation.

- The spread of frequencies is dependent on the diffusion 
coefficient D.
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The line width at half height of the spectrum of frequencies 
observed is related to the diffusion coefficient of the scatterer

Light Scattering Experiment

Laser at fo
Scattered light

Scatterers in solution (Brownian motion)

ffo

Narrow line incident laserDoppler broadened
scattered light

f

0 is way off scale f ~ 1 part in 1010 - 1015
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More Detailed Picture
detector



Inter-particle interference

time

Detected 
intensity

Iaverage

How can we analyze the fluctuations in intensity?

Data = g() = <I(t) I(t + )>t = intensity autocorrelation function

What determines correlation time?

• Scatterers are diffusing – undergoing Brownian motion –
with a mean square displacement given by <r2> = 6Dc  
(Einstein)

• The correlation time c is a measure of the time needed 
to diffuse a characteristic distance in solution – this 
distance is defined by the wavelength of light, the 
scattering angle and the optical properties of the solvent 
– ranges from 40 to 400 nm in typical systems

• Values of c can range from 
0.1 s (small proteins) to days (glasses, gels)
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Dynamic light scattering experiment:

• Light intensity is I(t) at time t 

• At the time t + , which is a very small time later than t, the 
diffusing particles will have new positions and the intensity at 
the detector will have a value I(t+) 

• The detector saves the values for I(t + ) at numerous times 

• The autocorrelator automatically calculates the function instead 
of the discrete intensities

Correlation spectroscopy
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Correlation spectroscopy

The number of macromolecules present in the volume element 
illuminated by the laser fluctuates with time.  Thus, the scattering 
intensity also fluctuates. 

In a single detector setup, autocorrelation takes the place of cross-
correlation. 

Autocorrelation is mathematically identical to cross-correlation, 
except that rather than comparing two signals with one another, one 
signal is compared with a time-delayed version of itself. 
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I(t+) correlates with I(t), the closer the measurement is to time 
zero, the more similar I(t+) is to I(t) since the particles have not 
had much time to move: 

As time goes on there is no more similarity between the starting 
state and the current state  - the measured intensities do no 
correlate anymore to the beginning one. 

This happens faster if the particles are smaller since smaller 
particles move faster. One needs a method for quantifying how fast 
the correlation takes to break down between the starting 
measurement and one a short time later. 

• Light intensity is I(t) at time t 

• At t + new positions of particles - the intensity at the detector 
will have a value I(t+) 

• The detector saves the values for I(t + ) at numerous times 

• The autocorrelator automatically calculates the function instead 
of the discrete intensities
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The function used to calculate this correlation is the 
autocorrelation function it describes how a given measurement 
relates to itself in a time dependent manner. 

At time zero there is a 100% autocorrelation. 

As time progresses, the autocorrelation diminishes reaching zero 
as there is no more similarity between starting and ending states. 

The intensity varies in the time scale of the molecules moving 
the distance of a wavelength: 

ovalbumin (45 kDa, D = 8.10-11m2/s) moves moves 828 nm 
(laser wavelength) in 4 ms

The decay of the autocorrelation is described by an exponential 
decay function g() which relates the autocorrelation to the 
diffusion coefficient D and the measurement vector q: 

n = refractive index of the solution (1.33 for water)
 = wavelength of the laser (e.g 632.8 nm)
 = angle of scattering measurement
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As indicated in the figure, g() will tend to be >0 for short  and 
will be 0 for long .   Thus, if we measure g() as a function of 
, we observe an exponential decay to zero. 

]exp[)( 2 Dqgg o 

Thus, a plot of ln[g()] vs  will have a slope of -Dq2. 

Considering the 1-D movement of a suspended particle in a solvent:

In the steady state:              <V(t)> = 0

The statistical average of the product of the velocities at two different 
times depends only on the time difference:

<V(t1)V(t2)>=Cv(t1-t2) =2D(t1-t2)

<V(t1)V(t2)>= <V(t)V(0)>= Cv(t)=2D(t)

Where, D is the diffusion coefficient and Cv(t) is the velocity 
correlation function that is equivalent to the thermal motion for short 
time difference

Brownian motion
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Autocorrelation Function

• The average of the time varying portion of the intensity 
at some initial time, t, with the time varying portion of the 
intensity at some later time, t+∆t.

• This calculation is done for many values of ∆t.

• For small values of ∆t, the signal is still correlated with 
the signal at t = 0; positive average intensity.

• For large values of ∆t, this is not true, and the 
autocorrelation function will eventually average out to 
zero.  

• By measuring how long it takes the function to go to 
zero, we can tell how fast the particles are moving

Intensity autocorrelation

• g() = <I(t) I(t + )>t

For small 



For larger 


g()


c
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Analysis of Light Intensity Fluctuations 

Autocorrelation FunctionLight Intensity Fluctuations

Particles with a large physical dimension (radius) diffuse 
more slowly through a solvent, while small particles 
diffuse more quickly.  Intensity fluctuations seen through 
time are therefore slower for large particles.

Autocorrelation functions
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Diffusion
• What can we learn from the correlation time?
• Knowing the characteristic distance and 

correlation time, we can find the diffusion 
coefficient D

• According to the Stokes-Einstein equation

where R is the radius of the equivalent 
hydrodynamic sphere and  is the viscosity of 
the solvent

• So, if  is known we can find R (or if R is known 
we can find 
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Timescale of Motion
How does one get from a diffusion coefficient to Rh?

kB – Boltzmann’s constant
T    – temperature (Kelvin)  
η – viscosity of solvent
Rh – hydrodynamic radius

Stokes - Einstein Relation
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Intensity Fluctuations 

The rate at which particles diffuse is related to their size, 
provided all other parameters are constant. 
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By fitting the points of autocorrelation to the function g(), 
the diffusion coefficient can be measured and related to the 
equivalent sphere of diameter d using the Stokes - Einstein 
equation:

 = diluent viscosity (water = 8.94*10-4 kg/(ms)
T = Temperature (K) (room temp = 298 K)
D = diffusion coefficient (in m2/s)
kB = Boltzmann constant (1.3807*10-23 J/K)
d = sphere diameter (m)

Dt  T

High temperature 
speeds it up

Dt  1/R

Small particles move faster
Dt  1/fs

Nonsphericity slows down

mobility

What Affects Translational Diffusion?

Dt  1/fh

Attached solvent and/or 
interparticle interactions 
create drag

Dt  1/

Viscous solvent slows it 
down.
…and if concentration 
too high, ‘viscosity 
effects’

Intrinsic factors
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Autocorrelation Function 
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Hydrodynamic radius of lysozyme 
as a function of urea concentration

Concentration 
of urea 

(M)

Hydrodynamic 
radius 

(nm)

0.9 1.96 ±0.14

1.8 1.93 ±0.20

2.7 1.83 ±0.23

3.6 1.96 ±0.29

4.5 1.89 ±0.25

5.4 1.99 ±0.18
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• The hydrodynamic radius of lysozyme (1mg/ml)
is independent of the urea concentration
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pH 2 3 4 5 6 7 8 9 10

s (S) 2.93 3.02 3.89 4.41 4.40 4.15 3.60 2.25 2.20

D (x 107) 
cm2s-1

7.91 8.00 8.00 5.90 5.92 5.61 4.86 3.08 2.97

The data given below describe the variation of 
sedimentation coefficient, s, and diffusion 
coefficient, D for a protein as a function of pH.

Explain what happens to the protein at low and high 
pH, assuming that the protein adopts its native 
structural state (i.e. structural conformation) between 
pH 5 and pH 6.

F-luc in GuHCl

F-luc in GuHCl

Firefly-luc

Singer and Lindquist (1998) Mol. Cell 1, 639.

Closed circles: buffer 
Open circles: buffer + trehalose

light scattering monitored at 360 nm 
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