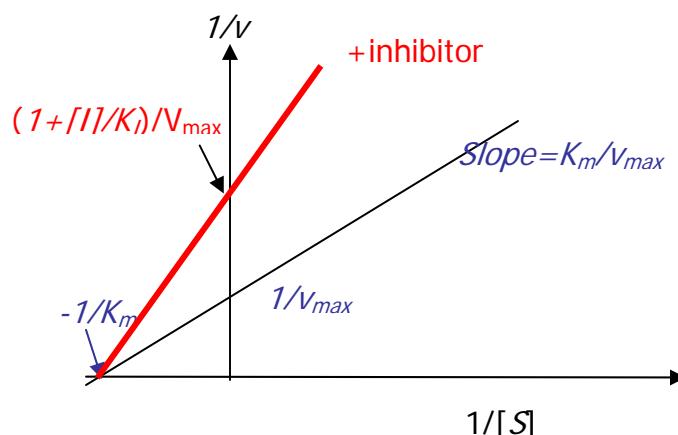
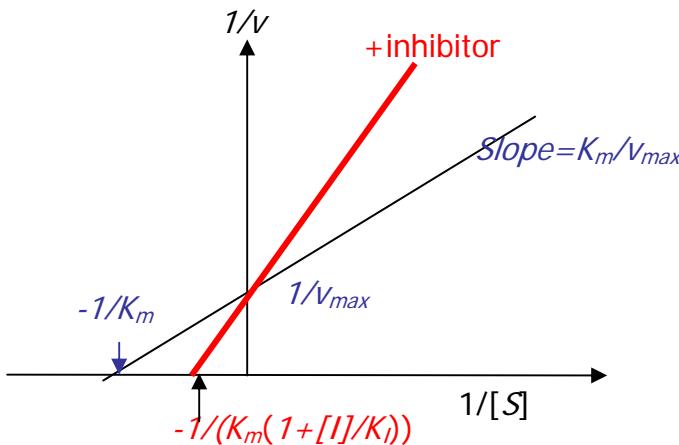


Experiment No. 5

Enzyme Kinetics and Inhibition Studies

Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. The study of the rate at which an enzyme works is called **enzyme kinetics**. Enzyme kinetics as a function of the **concentration of substrate [S]** available to the enzyme is shown in the figure.



Plotting V_i as a function of $[S]$, we find that

- At low values of $[S]$, the initial velocity, V_i , rises almost linearly with increasing $[S]$.
- The asymptote represents the maximum velocity of the reaction, designated V_{max} .
- The substrate concentration that produces a V_i that is one-half of V_{max} is designated the Michaelis-Menten constant, K_m (named after the scientists who developed the study of enzyme kinetics).

K_m is (roughly) an inverse measure of the affinity or strength of binding between the enzyme and its substrate. The lower the K_m , the greater the affinity (so the lower the concentration of substrate needed to achieve a given rate).

Enzymes can be inhibited **competitively**, when the substrate and inhibitor compete for binding to the same active site or **noncompetitively**, when the inhibitor binds somewhere else on the enzyme molecule reducing its efficiency.

In the presence of a competitive inhibitor (left panel), it takes a higher substrate concentration to achieve the same velocities that were reached in its absence. So while V_{max} can still be reached if sufficient substrate is available, one-half V_{max} requires a higher $[S]$ than before and thus K_m is larger. With noncompetitive inhibition (right panel), enzyme rate (velocity) is reduced for all values of $[S]$, including V_{max} and one-half V_{max} but K_m remains unchanged. A "double-reciprocal" or Lineweaver-Burk plot is usually plotted to determine the kinetic parameters V_{max} and K_m .

When a slice of apple is exposed to air, it quickly turns brown. This is because the enzyme **o-diphenol oxidase** catalyzes the oxidation of phenols in the apple to dark-colored products.

The V_{max} and the Michaelis-Menten constant (K_m) for this enzyme are to be determined.

- With **catechol** as the substrate. The enzyme converts it into **o-quinone**, which is then further oxidized to dark products.
- when it acts in the presence of a **competitive inhibitor**
- when it acts in the presence of a **noncompetitive inhibitor**

Procedure:

- Grind up pieces of apple and centrifuge the resulting soup.
- The supernatant is your enzyme preparation.
- Because of the speed with which colored products are formed, we can use the intensity of the color as a measure of product formation.

No Inhibitor

- Set up five tubes (Tubes A to D) with different concentrations of catechol (the substrate).
- Add a fixed amount of enzyme preparation to Tube A and measure the change in absorbance (**Optical Density**) at 540 nm at 1 minute intervals for several minutes.
- Record the average **change** in OD_{540} per minute (ΔOD_{540}). Since the OD is directly proportional to the concentration of the products, we can use it as a measure of the rate or velocity of the reaction (V_i).
- Repeat with the other three tubes.

Effect of para-hydroxybenzoic acid and phenylthiourea

Repeat the above procedure adding a fixed amount of a solution of any one of the above compounds to each of the four tubes.

Plot Lineweaver-Burke plots to determine the kinetic parameters in each case.

Explain what you observe. What type of inhibitors are the two compounds?