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The vibronic and spin-orbit-induced interactions among the 3�−, 1�, and 1�+ electronic states
arising from a half-filled � orbital of a linear triatomic molecule are considered, employing the
microscopic �Breit-Pauli� spin-orbit coupling operator. The 6�6 Hamiltonian matrix is derived in
a diabatic spin-orbital electronic basis set, including terms up to fourth order in the expansion of the
molecular Hamiltonian in the bending normal coordinate about the linear geometry. The symmetry
properties of the Hamiltonian are analyzed. Aside from the nonrelativistic fourth-order
Renner-Teller vibronic coupling within the 1� state and the second-order nonrelativistic vibronic
coupling between the 1�+ and 1� states, there exist zeroth-order, first-order, as well as third-order
vibronic coupling terms of spin-orbit origin. The latter are absent when the phenomenological
expression for the spin-orbit coupling operator is used instead of the microscopic form. The effects
of the nonrelativistic and spin-orbit-induced vibronic coupling mechanisms on the 3�−, 1�, and 1�+

adiabatic potential energy surfaces as well as on the spin-vibronic energy levels are discussed for
selected parameter values. © 2008 American Institute of Physics. �DOI: 10.1063/1.2840356�

I. INTRODUCTION

It has previously been shown that the inclusion of the
microscopic Breit-Pauli spin-orbit �SO� operator in the mo-
lecular Hamiltonian of linear triatomic molecules gives rise
to novel vibronic coupling terms for 2� degenerate elec-
tronic states.1,2 The vibronic coupling terms arising from the
two-electron Breit-Pauli operator have also been discussed
for 3� electronic states of linear triatomic molecules.3 It has
been found that in addition to the nonrelativistic Renner-
Teller coupling term, which is of second order in the bending
amplitude �in 2� electronic states�, there exist SO-induced
vibronic coupling terms which are of first order in the bend-
ing amplitude.1–3 In the present work, we proceed one step
further and develop a model for the description of the com-
bined effects of Renner-Teller and SO coupling of linear tri-
atomic molecules with a half-filled � shell. This approach
employs the microscopic Breit-Pauli SO operator for two
active electrons. It may be applied for a wide range of linear
or quasilinear molecules ranging from simple carbenes to
heavier molecular systems.

Carbenes play an important role in combustion,4,5

stratospheric6 and interstellar chemistry,7,8 as well as in or-
ganic and organometallic reactions9–12 and processes that in-
volve thermal degradation of small organic molecules.13 The
prototypical carbene methylene �CH2� has been a favorite
target of spectroscopists14–16 and theoreticians17–20 for nearly
half a century, due to its fundamental role as a radical inter-
mediate species in gas-phase chemical reactions.21 Moreover,
it is sufficiently small to serve as a benchmark molecular

system for the development of ab initio electronic-structure
methods. From an electronic-structure point of view, CH2 is
a linear molecule with a half-filled � shell, since two of its
valence electrons occupy a degenerate � orbital. This elec-
tronic configuration gives rise to the 3�g

−, 1�g and 1�g
+ elec-

tronic states, the first one being the electronic ground state of
CH2 at the linear configuration, as expected from Hund’s
rule. However, the lower-energy Renner-Teller-split compo-
nent arising from the 1�g electronic state of CH2 lies only
slightly above its ground electronic state at bent geometries,
as a result of strong Renner-Teller and pseudo-Renner-Teller
vibronic interactions.

The calculation of accurate rovibronic spectra of CH2

poses a considerable theoretical challenge due to its large-
amplitude bending motion and the strong nonadiabatic cou-
plings involved. Extensive calculations of the CH2 spectra
have previously been performed, based on a systematic treat-
ment of the Renner-Teller vibronic coupling.22–24 While the
analysis of this effect has reached a high level of sophistica-
tion for the low-lying electronic states,25 the treatment of the
SO coupling in CH2 is still largely phenomenological, as it is
based on an effective SO coupling parameter between the
1A1 and 3B1 electronic states at bent geometries. This param-
eter is taken either as an empirical constant or is considered
to be a function of the bending normal coordinate.25

Prototypical molecules in their own right are the haloge-
nated derivatives of CH2, i.e., CH�D�X and CX2 with X=F,
Cl, Br. They can be considered as model systems for the
study of the spectroscopy and dynamics on three coupled
potential energy surfaces, providing insight into the reactiv-
ity and electronic structure of carbenes as well as the inter-
play between SO coupling and Renner-Teller vibronic inter-
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actions. These species also serve as benchmarks for both
theory and experiment. The ground electronic state of the
dihalocarbenes, as well as of SiH2 and GeH2, corresponds to
the lower Renner-Teller-split component of the 1� electronic
state which is of 1A1 spatial symmetry. The two lowest elec-

tronic states of CH�D�X are X̃ 1A� and Ã 1A� at bent geom-
etries. These arise from the Renner-Teller splitting of the
electronically degenerate 1� ground electronic state at the
linear configuration. The triplet electronic state with 3A� spa-
tial symmetry arises from the 3�− electronic state and lies in
the vicinity of these Renner-Teller-split electronic states. The
ã 3A� state plays a double role, as it is involved in SO cou-

pling with the X̃ 1A� state and contributes to the perturbations

of the Ã 1A� electronic state of CH�D�X at the linear geom-
etry.

The goal of the present work is the theoretical study of
the interplay of the Renner-Teller and SO interactions in lin-
ear triatomic molecular systems with a half-filled � shell.
While the combined effects of �-� and SO vibronic cou-
plings on the electronic structure of linear molecules have
previously been investigated employing the microscopic
�Breit-Pauli� spin-orbit coupling operator,26,27 no correspond-
ing information about the combined �-� and SO interactions
has been elaborated thus far. We develop the theoretical for-
malism which is required for a systematic and comprehen-
sive description of combined Renner-Teller and SO vibronic
coupling effects in quasilinear molecules with a half-filled �
orbital. We illustrate the effects of particular coupling terms
by variational energy-level calculations for selected models.
The carbenes as well as heavier linear triatomic species will
be the systems of choice for the application of these meth-
ods. The results of the present analysis will facilitate a better
understanding of the complicated perturbation mechanisms
involved in these species as well as an unambiguous inter-
pretation of the experimentally observed irregular patterns of
their spin-vibronic energy levels which still defy a compre-
hensive spectroscopic analysis.

The remainder of this paper is arranged as follows. The
derivation of the Hamiltonian and the analysis of its symme-
try properties are reviewed. The effect of the Renner-Teller
and other electrostatic vibronic-coupling parameters on the
3�−, 1�, and 1�+ potential energy surfaces for a model mo-
lecular system is analyzed. The SO-induced vibronic cou-
pling constants of the Hamiltonian are explicitly related to
topographic features of these potential energy surfaces. Their
impact on the 3�−, 1�, and 1�+ spin-vibronic energy levels is
discussed.

II. THEORY

A. Spin-vibronic Hamiltonian in the diabatic
representation

Consider the two electrons of a half-filled � shell mov-
ing in the field of three linearly arranged nuclei along the z
axis with effective nuclear charges Q1, Q2, and Q3. The elec-
tronic states that arise from this electronic configuration are
3�−, 1�, and 1�+. In this work, their mutual interaction and
coupling due to the degenerate bending vibrational mode of
� symmetry are examined. To simplify things, the effect of

the two stretching vibrational modes on the vibronic cou-
pling problem is not considered here. Their effect is to “tune”
the energy separations among the 3�−, 1�, and 1�+ electronic
states. The present formalism can be extended to include the
effects of the totally symmetric stretching vibrational modes,
see, e.g., Refs. 27–29.

The spin-vibronic molecular Hamiltonian Ĥ can be ex-
pressed as

Ĥ = T̂N + Ĥel = T̂N + Ĥes + ĤSO, �1�

where T̂N is the nuclear kinetic-energy operator and Ĥel is
the electronic Hamiltonian which includes the kinetic energy
of the electrons, the electron-nuclear and electron-electron

interaction terms �represented by Ĥes�, as well as the SO

interaction �given by ĤSO�. If we express the dimensionless
bending normal mode in the polar-coordinate representation
��, �� and use atomic units, the nuclear kinetic-energy op-
erator is given by

T̂N = −
�

2
�1

�

�

��
��

�

��
� +

1

�2

�2

��2� . �2�

The electrostatic part of the Hamiltonian is written as

Ĥes = 	
m=1

2 �− 1
2�m

2 − 	
n=1

3
Qn

rmn
� +

1

r12
, �3�

and the Breit-Pauli SO operator for two electrons is

ĤSO = 	
m=1

2

ĤSO
�m� + ĤSO

�12�, �4�

where

ĤSO
�m� = 1

2g	e
2Ŝm	

n=1

3
Qn

rmn
3 �rmn � �− i�m�� �5�

represents its one-electron part �m=1,2� and

ĤSO
�12� =

ig	e
2

2r12
3 �Ŝ1�r12 � ��1 − 2�2��

+ Ŝ2�r21 � ��2 − 2�1��� �6�

is the corresponding two-electron contribution.30 Here, g

2.0023 refers to the g factor of the free electron and 	e

=1 /2c designates the Bohr magneton.
In Eq. �2�, � refers to the harmonic vibrational fre-

quency of the bending vibrational mode. The normal coordi-
nates of the bending vibrational mode Q
 are given by the
relationship

Q
 = Qx 
 iQy = �e
i�, �7�

where �Qx ,Qy� are the dimensionless bending normal coor-
dinates. In Eqs. �5� and �6�, r1 and r2 refer to the radius
vectors of electrons 1 and 2, respectively, Rn �n=1,2 ,3� cor-
respond to the nuclear radius vectors, rmn=rm−Rn �rmn

= �rmn��, r12=r1−r2=−r21 �r12= �r12��, and
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Sm = i�̂x
�m� + j�̂y

�m� + k�̂z
�m�. �8�

In Eq. �8�, �̂x
�m�, �̂y

�m�, and �̂z
�m� denote the Pauli spin matrices

and i, j, and k symbolize the unit vectors of the three-
dimensional space.

The symmetry properties of the electronic Hamiltonian

Ĥel are represented by the commutators

�Ĥel,Ĵz� = 0 �9�

and

�Ĥel,T̂� = 0, �10�

where

Ĵz = L̂z + Ŝz = − i
�

��1
+ 1

2 �̂z
�1� − i

�

��2
+ 1

2 �̂z
�2� �11�

is the z component of the electronic �orbital+electron spin�
angular momentum operator31 and

T̂ = �̂y
�1��̂y

�2�c.c.̂ �12�

stands for the time-reversal symmetry operator.31,32 Here, �
represents the electronic azimuthal angular coordinate, �̂z

�m�

corresponds to the z projection of the spin angular momen-
tum of the mth electron, and c.c.̂ denotes the operation of

complex conjugation. T̂ is an antiunitary operator31,32 and

obeys the relation T̂ 2=1 for molecular systems with an even
number of electrons �as is the case here�.

The full molecular Hamiltonian defined in Eq. �1� also
possesses time-reversal symmetry and satisfies the axial
symmetry property, i.e., it commutes with the z component
of the total �electronic+nuclear� angular momentum opera-
tor, which is defined by

Ĵz� = Ĵz − i
�

��
. �13�

The eigenvalues of Ĵz� are denoted by the spin-vibronic an-
gular momentum quantum numbers  and are integers
�=0, 
1, 
2, . . . �. In the absence of SO coupling interac-
tions, the electronic orbital ��� and electron spin ��� projec-
tion quantum numbers are good quantum numbers. In the
presence of SO coupling, �=�+� is a good quantum num-
ber in the fixed-nuclei approximation. When the nuclear mo-
tion is included, only  remains a good quantum number.

We introduce �-type molecular orbitals P�r ,z�e
i�

which are solutions of the one-electron �Hartree-Fock�
Schrödinger equation at the linear configuration, where r, z,
and � represent cylindrical electronic coordinates. We define
a two-electron diabatic33–35 spin-orbital electronic basis set
�diabatic spin orbitals� for a linear triatomic molecular
system.1–3 The basis set consists of the two electronic com-
ponents of the 1� electronic state �with electronic orbital
angular momentum quantum numbers �= 
2� and the elec-
tronic states corresponding to the 3�− and 1�+ spatially non-
degenerate electronic states ��=0�. Their spin angular mo-
mentum quantum numbers are �=0, 
1.

The two-electron diabatic electronic basis functions ��
�,

which are orthonormal, antisymmetric with respect to elec-

tron exchange, and eigenfunctions of Ŝ2, Ŝz, L̂z, and Ĵz, are
given by

�+2
+2 =

1
�2

P�1�P�2�ei��1+�2���1	2 − �2	1� , �14�

�+1
0 =

1
�2

P�1�P�2��ei��1−�2� − e−i��1−�2����1�2� , �15�

�0
0 = 1

2 P�1�P�2��ei��1−�2� − e−i��1−�2����1	2 + �2	1� , �16�

�0
0 = 1

2 P�1�P�2��ei��1−�2� + e−i��1−�2����1	2 − �2	1� , �17�

�−1
0 =

1
�2

P�1�P�2��ei��1−�2� − e−i��1−�2���	1	2� , �18�

�−2
−2 =

1
�2

P�1�P�2�e−i��1+�2���1	2 − �2	1� , �19�

where P�m�= P�rm ,zm�, m denotes the label of the electron,
and �� ,	� correspond to the two possible electron spin
eigenfunctions. The wave functions defined in Eqs. �15�,
�16�, and �18� are antisymmetric with respect to reflection
through the molecular plane of the D�h or C�� point group,
while the one defined in Eq. �17� is symmetric and is distin-
guished by the label �. The above set of diabatic electronic
basis functions is defined in the absence of interelectronic
interactions.

The time-reversal operator T̂ has the following effects
on the six diabatic electronic basis functions:

T̂��
2

2� = − ��2

�2c.ĉ. �20�

T̂��
1
0 � = ��1

0 c.ĉ. �21�

T̂��0
0� = − �0

0c.ĉ. �22�

T̂��0
0� = − �0

0c.c.̂. �23�

Hence, the time-reversal symmetry operator T̂ in the diabatic
representation is given by

T̂
�+2

+2

�+1
0

�0
0

�0
0

�−1
0

�−2
−2

� =
0 0 0 0 0 − 1

0 0 0 0 1 0

0 0 − 1 0 0 0

0 0 0 − 1 0 0

0 1 0 0 0 0

− 1 0 0 0 0 0

�
�+2

+2

�+1
0

�0
0

�0
0

�−1
0

�−2
−2

�c.c.̂.

�24�

Following the methodology of Refs. 1, 3, and 26, a 6
�6 spin-vibronic Hamiltonian matrix can be derived in the
six-dimensional spin-orbital electronic Hilbert space of the
diabatic electronic basis functions defined in Eqs. �14�–�19�.
The matrix elements of Ĥel are expanded in a Taylor series in
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the bending amplitude �, keeping expansion terms up to
fourth order in �. Angular momentum conservation and time-
reversal symmetry determine the nonvanishing matrix ele-
ments. A further simplification is achieved by the explicit

calculation of the individual coefficients, performing the in-
tegration over the angular variables �1 and �2 as well as over
the discrete spin variables �see, e.g., Ref. 3�. More details are
given in Appendix A. The result of this derivation is

Ĥ = T̂N + Ĥel = �T̂N +
1

2
��2 +

1

4!
��4�1 + �

E1�+2
d�ei� 0 c�2e2i� b�3e3i� a�4e4i�

d�e−i� E3�+1
− 0 d��ei� 0 − b�3e3i�

0 0 E3�0
− g 0 0

c�2e−2i� d��e−i� g E1�0
+ − d��ei� c�2e2i�

b�3e−3i� 0 0 − d��e−i� E3�−1
− − d�ei�

a�4e−4i� − b�3e−3i� 0 c�2e−2i� − d�e−i� E1�−2

� , �25�

where 1 represents the 6�6 unit matrix and � denotes the
quartic anharmonic-oscillator parameter.

�E1�+2
;E1�−2

�, �E3�+1
− ;E3�0

− ;E3�−1
− �, and E1�0

+ correspond

to the energies of the 1�, 3�−, and 1�+ SO-coupled electronic
states at the linear geometry ��=0�, respectively. The energy
separations between the 3�− and 1� potential energy surfaces
as well as between the 1� and 1�+ states at �=0 are desig-
nated as E1 and E2, respectively, in the following. While the
vibronic parameters a �quartic Renner-Teller coupling be-
tween the two electronic components of 1�� and c �quadratic
1�+− 1� coupling� are of nonrelativistic �electrostatic� char-
acter, the parameters g �zeroth-order 3�0

−− 1�0
+ coupling�,

d �linear 3�
1
− − 1�
2 coupling�, d� �linear 3�
1

− − 1�0
+ cou-

pling�, and b �cubic 3�
1
− − 1��2 coupling� are of SO origin.

The effects of the zeroth-, first-, second-, third-, and fourth-
order vibronic coupling parameters on the topography of the
potential energy surfaces will be discussed below. The defi-
nitions of the SO-induced, Renner-Teller, and 1�+− 1�

interstate vibronic coupling parameters are summarized in
Table I. Note that most of the SO-induced coupling param-
eters would be absent if a phenomenological expression of
the SO coupling operator36,37 were used instead. Equation
�25� reveals, in particular, that the Breit-Pauli SO operator is
not diagonal in the diabatic electronic basis.

Among all vibronic coupling matrix elements, the pa-
rameter g is the only one which has an effect on the potential
energy surfaces at the linear geometry. Specifically, it
couples the 3�− state with the 1�+ state. As a result of this
coupling, the spin degeneracy of the 3�− state is lifted �see
Sec. III B for details�. It has previously been shown that
nonzero SO matrix elements exist between � states with dif-
ferent multiplicities ��S=1� when these behave differently
under the �� operation.30 The SO coupling does not lift the
degeneracy of the 1� state at �=0 in conformity with group
theoretical considerations. The SO-coupled electronic Hamil-
tonian matrix of Eq. �25� can be diagonalized for �=0 by a

TABLE I. The electrostatic �a and c� and SO-induced �g, d, d�, and b� vibronic coupling coefficients of the
bending vibrational mode that parametrize the model electronic Hamiltonian, defined in the diabatic electronic
basis set, and their relationships to the terms of the Taylor series expansion of the potential.

Symbol Description Definition

a Quartic Renner-Teller coupling coefficient 1

4! � �4

��4 ��
2

2�Ĥel���2

�2��
0

c Quadratic 1�+− 1� coupling coefficient 1

2! � �2

��2 ��
2

2�Ĥel��0

0��
0

g Zeroth-order 3�0
−− 1�0

+ coupling coefficient ���0
0�ĤSO��0

0��0

d Linear 3�
1
− − 1�
2 coupling coefficient � �

��
��
2


2�ĤSO��
1
0 ��

0

d� Linear 3�
1
− − 1�0

+ coupling coefficient � �

��
��
1

0 �ĤSO��0
0��

0

b Cubic 3��1
− − 1�
2 coupling coefficient 1

3! � �3

��3 ��
2

2�ĤSO���1

0 ��
0

124318-4 Sioutis et al. J. Chem. Phys. 128, 124318 �2008�

Downloaded 01 Apr 2008 to 131.152.105.39. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



constant ��- and �-independent� unitary transformation. The
vibronic matrix presumably cannot be transformed to a
block-diagonal form for ��0.

B. Vibronic basis set and vibronic eigenfunctions

The basis set used for the variational calculation of vi-
bronic energy levels corresponds to direct products of elec-
tronic and vibrational wave functions �spin-vibronic basis
set� and is represented by

��,�,n,l� = ��,���n,l� , �26�

with electronic quantum numbers �=0, 
2, �=0, 
1, and
vibrational quantum numbers n=0,1 ,2 , . . ., l=n, n−2, . . .,
−n+2, −n. The electronic wave functions �� ,�� refer to the
spin-orbital diabatic electronic basis set defined in Eqs.
�14�–�19�, while the �n , l� are the eigenfunctions of the two-
dimensional isotropic harmonic oscillator.38

Since �Ĥ , Ĵz��=0, the vibronic eigenfunctions can be
classified by the spin-vibronic quantum number ,

Ĵz�� = �. �27�

The spin-vibronic basis set of Eq. �26� is constructed by first
specifying the electronic angular momentum quantum num-
bers � and then selecting suitable values of l of the �n , l�
vibrational wave functions for a given value of .

The spin-vibronic eigenfunctions with total angular mo-
mentum quantum number , �, satisfy the Schrödinger
equation

Ĥ� = E� �28�

for Ĥ of Eq. �1�. They are expressed as linear combinations
of the basis functions �26� for a given quantum number . A
second quantum number n is used to label the eigenvalues
�ordered by increasing energy� for a given . We, thus, de-
note eigenkets as � ,n�.

Based on the above, the spin-vibronic eigenfunctions
� ,n� may be written as

�,n� = 	
k

Ck
n�������n,l� , �29�

where the index k of the expansion coefficients Ck
n repre-

sents all symmetry-allowed combinations of the basis-set
quantum numbers �, �, n, and l. To simplify the notation,
we shall hereafter drop the 
 signs of the  quantum num-
bers.

Equation �26� defines a complete basis set. The basis set
must be truncated to some manageable size for the numerical
diagonalization of the Hamiltonian matrix. The calculated
eigenvalues are tested for convergence by systematically in-
creasing the number of vibrational basis functions until ad-
ditional basis functions have a negligible effect on the eigen-
values. The final matrices used were of the order of 103. The
nonvanishing matrix elements of the spin-vibronic Hamil-
tonian are given in Appendix B.

III. RESULTS AND DISCUSSION

The concept of the electronic adiabatic potential energy
surface �PES� is well-defined when the Born-Oppenheimer
approximation is valid, particularly if SO coupling is not
relevant for the problem. The Renner-Teller effect is an ex-
emplary case of a breakdown of the Born-Oppenheimer ap-
proximation. However, it is still useful to use the concept of
the adiabatic PESs for Renner-Teller active molecules in the
presence of SO coupling. In the following, the topographies
of two types of adiabatic PESs will be described. The first

type refers to the eigenvalues of Ĥes �Sec. III A�, while the

second corresponds to the eigenvalues of Ĥes+ĤSO �Secs.
III B and III C�. The PESs are obtained as parametric func-
tions of the nuclear positions by numerical diagonalization of
the 6�6 Hamiltonian matrix �we did not succeed in obtain-
ing analytical expressions for the eigenvalues even with the
aid of symbolic-mathematical tools�.

We also investigate the effects of SO-induced vibronic
coupling interactions �Sec. III B� as well as the combined
effects of Renner-Teller, 1�+− 1�, and SO-induced coupling
�Sec. III C� on the spin-vibronic energy levels of the 3�−, 1�,
and 1�+ electronic states for representative parameter values.
Since the Renner-Teller and 1�+− 1� electrostatic couplings
have a negligible impact on the energy-level diagrams for
reasonable parameter values, they will not be considered any
further in the present study.

A. Hamiltonian without SO coupling

The effects of the quartic 1� Renner-Teller and quadratic
1�+− 1� electrostatic vibronic coupling mechanisms on the
adiabatic PESs of the 3�−, 1�, and 1�+ electronic states of a
linear triatomic molecule are illustrated in Fig. 1. The figure
displays cross sections of the PESs �for any azimuthal angle
�� along the dimensionless bending normal coordinate � for
a system with the parameters E1=E2=5� and � /�=0.2 in
the limit of vanishing SO coupling interactions. The param-
eters were expressly chosen to highlight the effect of the
involved coupling mechanisms on the adiabatic PESs; that is,
comparatively large values of the coupling parameters were
chosen. Note that the ordinate scale of these diagrams is in
units of � and that the energy of the 3�− state, i.e., E3�−, is 0
for �=0.

The lowest curve �near �=0� represents a slice across the
3�− PES. The next-lowest function gives the 1� PES, while
the uppermost curve depicts the 1�+ PES. The energy order-
ing of these potential energy curves is based on Hund’s rule.
The 3�− potential is threefold spin degenerate. The 1�+ PES
is nondegenerate, while the 1� PES retains its twofold elec-
tronic degeneracy only in the limit of vanishing Renner-
Teller coupling and 1�+− 1� quadratic vibronic coupling.
The Renner-Teller theory predicts39,40 that a 1� electronic
state of a linear molecule will interact with the � vibration in
fourth order, leading to two PESs which touch at the linear
configuration.

The PESs of Fig. 1�a� were constructed considering only
the quartic Renner-Teller vibronic coupling effect, assuming
a /�=0.01. Upon displacement from the linear geometry ��
=0� along the bending coordinate, the 3�−, 1�, and 1�+ elec-
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tronic states reduce to 3B1, �1A1 , 1B1� and 1A1 in C2� geom-
etry, respectively. �Note that an in-plane y axis is assumed in
this work.� As the Renner-Teller effect becomes stronger, the
interaction between the two 1� electronic components in-
creases; the splitting between them becomes more pro-
nounced and starts at smaller displacements from the refer-
ence geometry �not shown�. Note the crossing between the
1� Renner-Teller-split potential energy functions with the

3�− and 1�+ functions at �� 
4.5 in Fig. 1�a�. The Renner-
Teller splitting of the electronically degenerate 1� PESs, be-
ing a fourth-order effect, is expected to take place at larger
displacements from the linear geometry than for �-type
Renner-Teller-split PESs. The slice across the lowest sheet of
the 1� PESs exhibits a double-well topography if the param-
eter a /� exceeds a certain critical value.

Figure 1�b� exhibits the ramifications of the 1�+− 1�
quadratic electrostatic interaction on the PESs for the ex-
ample case of c /�=0.1. Only the shapes of the 1�+ and 1�
PESs are expected to change, as this interaction does not
involve vibronic coupling with the 3�− electronic state. The
1�+− 1� interaction removes the degeneracy of the 1� com-
ponents.

B. Hamiltonian with SO coupling, excluding
electrostatic vibronic coupling

1. Potential energy surfaces

Figure 2 is constructed based on the same general prin-
ciples which have been applied for Fig. 1, but now the pure
SO-induced vibronic coupling effects are considered. Spe-
cifically, the diagrams �a�–�d� of Fig. 2 examine the effects of
the zeroth-order �g /�=6�, first-order �d /�=2�, �d� /�=2�,
and third-order �b /�=0.1� SO-induced vibronic coupling in-
teractions on the 3�−, 1�, and 1�+ PESs, respectively �the
parameter values are given in the caption�. The parameter
values were chosen with the express purpose of illustrating
and enhancing the SO-induced vibronic coupling effects.

Let us first examine the implications of the zeroth-order
3�0

−− 1�0
+ SO vibronic coupling parameter g for these PESs.

If we assume a linear geometry ��=0�, then the 6�6 elec-
tronic Hamiltonian matrix of Eq. �25� decouples into a diag-
onal matrix and a 2�2 submatrix which is responsible for
the mixing of the 3�0

− and 1�0
+ electronic states. The elec-

tronic states 1�
2 and 3�
1
− retain their twofold degeneracies

and their potentials remain unaffected.
The linear �first order in �� SO-induced vibronic cou-

pling parameters d and d� are expected to have, apart from
the zeroth-order parameter g, the largest impact on the to-
pography of the 3�−, 1�, and 1�+ PESs. We first investigate
the effect of the parameter d which refers to the coupling
between 3�
1

− and 1�
2. If we assume that all parameters
except d are zero, then the 6�6 electronic Hamiltonian ma-
trix of Eq. �25� reduces to two 2�2 submatrices which mix
�for ��0� the 1�
2 and 3�
1

− electronic states. The 3�0
− and

1�0
+ electronic states remain unaffected. While the twofold

degeneracies of the 3�
1
− and 1�
2 PESs are retained, their

curvatures change. The 3�
1
− PES develops a double-

minimum shape along the bending normal coordinate, while
the 1�
2 function becomes steeper as a function of � upon
increase of d /� �see Fig. 2�b��. As d� involves the 3�
1

− and
1�0

+ electronic states, the vibronic coupling interaction is
now manifested between the 3�
1

− and 1�+ PESs. If we as-
sume that all parameters except d� are zero, then the 6�6
electronic Hamiltonian matrix of Eq. �25� reduces to a 4
�4 submatrix which mixes �for ��0� the 3�
1

− and 1�0
+

electronic states. The 1�+ well is compressed and the 3�
1
−

PES exhibits a flattening, while retaining its double degen-

FIG. 1. Potential energy as a function of the bending coordinate for selected
cases of Renner-Teller and 1�+− 1� electrostatic vibronic couplings for �
and � electronic states of quasilinear triatomic molecules with a half-filled
� shell. The ordinate scale is in units of �, while the abscissa represents the
dimensionless bending normal coordinate �. The curves shown here have
been constructed for E1=E2=5� and � /�=0.2. The energy E3�− is defined
as 0 for �=0. �a� Renner-Teller vibronic coupling of the two electronic
components of 1� �a /�=0.01; � /�=0.2; c /�=0�. �b� Quadratic vibronic
coupling of 1�+ and 1� �c /�=0.1; � /�=0.2; a /�=0�.

124318-6 Sioutis et al. J. Chem. Phys. 128, 124318 �2008�

Downloaded 01 Apr 2008 to 131.152.105.39. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



eracy upon displacement from the linear geometry �see Fig.
2�c��. The 1� potential remains unaltered. The 3�
1

− PES
exhibits similar topographical characteristics in Figs. 2�c�
and 2�b� since the parameter values of d� /� and d /� are the
same in both cases. Of fundamental importance for kinetics
and spectroscopic studies is the accurate determination of the
barrier to linearity of the lowest PES which is defined as the
energy difference between the bent equilibrium geometry
and the “transition-state” linear geometry.

While the effect of the cubic SO-induced vibronic cou-
pling parameter b on the 3�− and 1� PESs is less important
than that of the zeroth-order and first-order contributions, it
introduces interesting changes to the topographies of these
PESs. This parameter represents third-order vibronic cou-
pling between 3�
1

− and 1��2. When all coupling parameters
except b are zero, the 6�6 electronic Hamiltonian matrix of
Eq. �25� reduces to a 4�4 submatrix which mixes �for �
�0� the 1�
2 and 3��1

− diabatic electronic states. The quali-
tative characteristics of this interaction are depicted in Fig.
2�d�, where one can notice that one component of the 3�−

PES becomes flatter upon bending, while the 1�
2 PES be-
comes steeper. The potentials of the 3�0

− and 1�0
+ states re-

main unperturbed.

2. Spin-vibronic energy levels

Central to this work is the impact that the linear SO-
induced vibronic coupling parameters d and d� have on the
3�−, 1�, and 1�+ spin-vibronic energy levels. Figures 3�A�
and 3�B� show the energy-level diagrams of the spin-
vibronic energy levels with calculated energies lower than
5�. The molecular parameters d /� in �A� and d� /� in �B�
vary between 0 and 0.5. The energy levels were computed
assuming E1=1.5�, E2=1.8�, and � /�=0. The ordinate
scales of the diagrams of �A� and �B� are in units of �, while
their abscissae refer to the dimensionless parameters d /�
and d� /�, respectively. The solid, long-dashed, dash-dotted,
dotted and medium-dashed lines correspond to energy levels
with =0, 1, 2, 3, and 4, respectively. The symmetry labels
of the states were determined in the same way as in Ref. 36.
Note the correlation of the spin-vibronic energy levels with
the harmonic-oscillator vibronic energy levels, as well as the
electronic states from which the latter levels arise in panels
�A� and �B� of Fig. 3.

As the linear SO-induced vibronic interaction parameter
d involves coupling between the electronic states 3�− and
1�, we expect energy-level perturbations to take place
among their energy levels satisfying ��=1. The degeneracy
of the lowest two =0, 1 �3�− ,�=0� spin-vibronic energy
levels in �A� is lifted since the latter one interacts with the
=1 �1� ,�=1� energy level. The former energy level re-
mains unperturbed as there is no �1� ,�=1� energy level with
=0 to interact with. Similarly, the =2 �1� ,�=0� energy
level interacts with the =2 �3�− ,�=1� energy level. �Note
that this 1� level can cross with the =1,3 3�− levels as
shown in Fig. 3�A��. The �1� ,�=1� energy levels with 
=3,1 interact with the same- quantum-number �3�− ,�=2�
levels. Finally, the =4, 2, and 0 �1� ,�=2� energy levels
interact with the =4, 2, and 0 �3�−, �=3, 3, and 1, 3� levels,
respectively. The same principles apply in Fig. 3�B�, where

FIG. 2. Potential energy as a function of the bending coordinate for selected
cases of SO-induced vibronic coupling in � and � electronic states of qua-
silinear triatomic molecules with a half-filled � shell. The ordinate scale is
in units of �, while the abscissa represents the dimensionless bending nor-
mal coordinate �. The curves shown here have been constructed for E1

=E2=5� and � /�=0.2. The energy E3�− is defined as 0 for �=0. The dia-
grams �a�–�d� represent “large” vibronic interactions: �a� zeroth-order vi-
bronic coupling of 3�0

− and 1�0
+ �g /�=6; � /�=0.2; d /�=0; d� /�=0;

b /�=0�, �b� linear vibronic coupling of 3�
1
− and 1�
2 �d /�=2; � /�

=0.2; g /�=0; d� /�=0; b /�=0�, �c� linear vibronic coupling of 3�
1
− and

1�0
+ �d� /�=2; � /�=0.2; g /�=0; d /�=0; b /�=0�, and �d� cubic vibronic

coupling of 3�
1
− and 1��2 �b /�=0.1; � /�=0.2; g /�=0; d /�=0;

d� /�=0�.
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the SO-induced vibronic coupling takes place between the
3�− and 1�+ electronic states. For example, the lowest 
=1 �3�− ,�=0� energy level interacts with the =1 �1�+ ,�
=1� energy level, while the =0 �3�− ,�=0� energy level
remains unaffected, as there is no =0 �1�+ ,�=1� energy
level to interact with. What is new in Fig. 3�B� is that only
one of the two degenerate =0 3�− �shown for �=1 and 3�
energy-level components may interact with suitable 1�+ en-
ergy levels due to the d� spin-vibronic coupling.

Figure 4 illustrates the effects of third-order �parameter
b� SO vibronic coupling on the 3�−, 1�, and 1�+ spin-
vibronic energy levels. This figure was constructed based on
the same principles as applied for Figs. 3�A� and 3�B�. All
spin-vibronic energy levels with calculated energies lower
than 5� are retained in the diagram. The parameter b /�
varies in the range of �0,0.10�. Figure 4 displays interesting
higher-order spin-vibronic coupling effects. The increase of
the parameter b /� causes degenerate groups of energy levels
to fully resolve into their individual components. What is
unique here is the early onset of extensive interstate energy-
level interactions. For example, the lowest =2 �1� ,�=0�

energy level interacts with the =2 �3�− ,�=1,3� energy
levels, and the variation of their energies reflects the coun-
terbalance of these interactions.

The interaction pattern of the spin-vibronic energy levels
is relatively trivial when the g parameter is varied. An im-
portant observation is that the energy-level perturbations be-
come relevant already for small values of g /�. Since g is of
zeroth order in � �that is, purely electronic�, it can become
significantly larger than the bending vibrational frequency �
in molecules with heavy atoms.

C. Hamiltonian with SO coupling, Renner-Teller
coupling, and 1�+− 1� coupling

1. Potential energy surfaces

Figure 5 illustrates the combined effects of Renner-
Teller, 1�+− 1� electrostatic, and SO-induced vibronic cou-
pling interactions on the 3�−, 1�, and 1�+ PESs of a tri-
atomic linear molecule for selected parameter values. The
cross sections along the bending normal coordinate cover the
most important regions of the 3�−, 1�, and 1�+ PESs, such

FIG. 3. �Color online� Calculated spin-vibronic energy levels with energies lower than 5� of the 3�−, 1�, and 1�+ electronic states for �A� linear 3�
1
−

− 1�
2 SO vibronic coupling �d� and �B� linear 3�
1
− − 1�0

+ SO vibronic coupling �d��, as a function of d /� and d� /�, respectively. The ordinate scale is in
units of �, while the abscissae in �A� and �B� refer to the dimensionless quantities d /� and d� /�, respectively. The solid, long-dashed, dash-dotted, dotted,
and medium-dashed lines represent energy levels with =0, 1, 2, 3, and 4, respectively. The energy levels were calculated for E1=1.5�, E2=1.8�, and
� /�=0.
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as the stationary points of bent-geometry energy minima as
well as linear-geometry local minima or local maxima.

Figure 5�a� was computed considering the zeroth-order
3�0

−− 1�0
+ SO coupling effect �g /�=4� plus the linear vi-

bronic coupling between 3�
1
− and 1�0

+ �g /�=4; d� /�=2�.
Figure 5�b� incorporates the same interactions as Fig. 5�a�
plus the linear 3�
1

− − 1�
2 vibronic coupling interaction
�g /�=4; d� /�=2; d /�=2�. Figure 5�c�, finally, combines
the topographic potential-energy-surface characteristics of
the 3�−, 1�, and 1�+ electronic states of Fig. 5�b� with those
introduced by cubic SO vibronic coupling between 3�
1

− and
1��2 �g /�=4; d� /�=2; d /�=2; b /�=0.1�.

Once the linear SO coupling interaction �parameter d� is
included in Fig. 5�b�, a number of interesting effects become
visible. What distinguishes Fig. 5�b� from Fig. 5�a� is that in
the former figure, the twofold degeneracies of the 3�
1

− and
1�
2 PESs are fully resolved, which would not have taken
place if the d and d� linear coupling effects were considered
independently, as was done in Sec. III B. The combined ef-

fects of the d and d� linear couplings translate into a con-
comitant interaction between the 3�
1

− and the 1�
2 and 1�0
+

PESs.
The interaction between the 3�
1

− and 1�
2 PESs is fur-
ther enhanced by the inclusion of the cubic coupling term
�b�, as shown in Fig. 5�c�. There appear two different sets of
bent-geometry stationary points, those that correlate with the
lowest of the two 3�
1

− PESs, which are located at �� 
6,
and the stationary points of the 3�0

− PES, which are posi-
tioned at �� 
2.

Any combination of the linear and cubic vibronic cou-
pling interactions, or the combined effects of the linear cou-
pling interactions alone, leads to SO splitting of the degen-
erate components of the 3�
1

− and 1�
2 PESs. Consider the
exemplary case of combined d and d� interactions. The
former concerns the 1�
2− 3�
1

− coupling, whereas the latter
refers to the 1�0

+− 3�
1
− coupling. The d and d� effects are

“competing” for the 3�
1
− energies. Therefore, the d vibronic

coupling quenches the d� vibronic coupling and vice versa.
The joint action of Renner-Teller, 1�+− 1� electrostatic,

and SO-induced vibronic coupling effects on the 3�−, 1�,
and 1�+ PESs is illustrated in Fig. 5�d� which combines the
effects of Fig. 5�c� plus the Renner-Teller and 1�+− 1� elec-
trostatic vibronic coupling �a /�=0.002; c /�=0.04; g /�=4;
d� /�=2; d /�=2; b /�=0.1�. Note the small, but non-
negligible, repositioning of the local energy minima of the
lowest 3�
1

− PES in Fig. 5�d� �at �� 
7�. Overall, one may
conclude that the Renner-Teller and 1�+− 1� electrostatic ef-
fects play only a moderate role for the shape of the PESs,
while the SO-induced vibronic coupling effects have a deter-
mining impact on these.

2. Spin-vibronic energy levels

The purpose of Fig. 6 is to illustrate, through the results
of numerical computations for a model system, how the
combined effects of the SO-induced vibronic coupling terms
of the vibronic Hamiltonian translate into energy-level inter-
actions and patterns for the 3�− and 1� electronic states. The
spin-vibronic energy levels were computed for E1=1.5�,
E2=1.6�, and � /�=0. Only those spin-vibronic energy lev-
els that are associated with the �=0 and 1 harmonic-
oscillator energy levels are included in this figure. The spin-
vibronic energy levels have been organized in two distinct
groups, each one of which is linked to the 3�− and 1� elec-
tronic states. These two groups of energy levels are differen-
tiated by distinct indentations of their corresponding �=0
and 1 harmonic-oscillator labels. The far left-hand column
presents the results of energy-level calculations for the un-
perturbed harmonic-oscillator case �column �a��. The energy
levels contained in columns �b�–�d� were calculated in the
presence of pure SO coupling, representing the incremental
addition of the g �g /�=2.0�, d� and d �d� /�=d /�=0.6�, and
b �b /�=0.04� SO coupling parameters, respectively.

The parameter g lifts the threefold degeneracy of the
�3�−, �=0� energy levels of 3�− vibronic symmetry into a
twofold degenerate level �3�1

−� and a nondegenerate energy
level �3�0+

− � �see Fig. 6�b��. The sixfold vibronic degeneracy
of the �3�−, �=1� energy level of 3� vibronic symmetry is

FIG. 4. �Color online� Calculated spin-vibronic energy levels with energies
lower than 5� of the 3�−, 1�, and 1�+ electronic states for cubic 3�
1

−

− 1��2 SO vibronic coupling �b� as a function of b /�. The ordinate scale is
in units of �, while the abscissa refers to the dimensionless quantity b /�.
The solid, long-dashed, dash-dotted, dotted, and medium-dashed lines rep-
resent energy levels with =0, 1, 2, 3, and 4, respectively. The energy levels
were calculated assuming E1=1.5�, E2=1.8�, and � /�=0.
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also lifted, producing a fourfold degenerate level �3�0


+ 3�2� and a twofold degenerate level �3�1�. The vibronic
degeneracy of the �1�, �=1� energy level of 1�+ 1� vibronic
symmetry is maintained in column �b�. Note that the �3�−,
�=0,1� spin-vibronic energy levels 3�1

− and 3�1 are tuned
into accidental quasiresonance in column �b� of Fig. 6. The
inclusion of the d� and d linear coupling effects in column
�c� lifts the aforementioned degeneracies and quasidegen-
eracy of column �b� �see column �c��. The �1�, �=1� energy
levels 1�1 and 1�3 are tuned into accidental quasidegen-
eracy in column �d�. The value of the cubic coupling param-
eter b which is included in the energy-level calculation of
column �d� is too small to cause significant changes of the
energy-level pattern of column �c�. The effects of SO vi-
bronic coupling would be more pronounced if the 1� PE
function had a minimum at ��0, as it happens in CH2,
CHX, CX2, SiH2, GeH2, etc. Then the lowest 1� and 3�−

vibronic levels would be quasidegenerate.

IV. CONCLUSIONS

The combined effects of Renner-Teller, 1�+− 1�, as well
as SO-induced vibronic coupling interactions on the PESs of
the 3�−, 1�, and 1�+ states arising from a half-filled � orbital
of a linear triatomic molecule have been described, employ-
ing the microscopic �Breit-Pauli� expression of the SO op-
erator. The microscopic theory involves six SO-coupled elec-
tronic wave functions with spin-orbital angular momentum
projections �= 
2, 
1, 0
. The spin-vibronic Hamiltonian
matrix has been constructed in the diabatic representation,
considering terms up to fourth order in the bending displace-
ment. The symmetry properties of the SO-induced as well as
electrostatic vibronic coupling effects have been described in
detail. We have provided the first systematic and complete
analysis of the SO vibronic coupling effects in the manifold
of electronic states which arise from a half-filled � orbital in
a quasilinear molecule. The Taylor expansion of the vibronic
matrix and the numerical calculation of the vibronic energy
levels can straightforwardly be extended to higher orders if
this should be necessary. The present analysis provides the
foundation for a comprehensive analysis and computational
prediction of the vibronic spectra of CH2 as well as of
heavier linear triatomic halogenated carbenes of the R1CR2

type, which are subject to increasing SO interactions, such as
CHX with X=F, Cl, Br, I, their deuterated analogs, CX2, or
various molecular species such as SiH2, GeH2, etc.
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APPENDIX A: DERIVATION OF THE „

3�−, 1�, 1�+
… SO

VIBRONIC COUPLING HAMILTONIAN

Consider the matrix elements of the electronic Hamil-

tonian Ĥes+ĤSO with the electronic basis functions defined

in Eqs. �14�–�19�. We expand Ĥes+ĤSO in powers of the

FIG. 5. Potential energy as a function of the bending coordinate for selected
cases of Renner-Teller, 1�+− 1� electrostatic, and SO-induced vibronic cou-
plings in � and � electronic states of quasilinear triatomic molecules with a
half-filled � shell. The ordinate scale is in units of �, while the abscissa
represents the dimensionless bending normal coordinate �. The curves
shown here have been constructed for E1=E2=5� and � /�=0.2. The energy
E3�− is defined as 0 for �=0. �a� �g /�=4; d� /�=2; � /�=0.2; a /�=0;
c /�=0; d /�=0; b /�=0�, �b� �g /�=4; d� /�=2; d /�=2; � /�=0.2; a /�
=0; c /�=0; b /�=0�, �c� �g /�=4; d� /�=2; d /�=2; b /�=0.1; � /�=0.2;
a /�=0; c /�=0�, and �d� �a /�=0.002; c /�=0.04; g /�=4; d� /�=2; d /�
=2; b /�=0.1; � /�=0.2�.
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bending normal mode Q
=�e
i�. The requirement that the
Hamiltonian must be totally symmetric with respect to the

angular-momentum operator Ĵz� leads to the following struc-
ture of the Hamiltonian matrix:

Hel =

�+2
+2 �+1

0 �0
0 �0

0 �−1
0 �−2

−2

�+2
+2 E1� d1�ei� h�2e2i� c�2e2i� b�3e3i� a�4e4i�

�+1
0 d1

��e−i� E3�− d2�ei� d3�ei� k�2e2i� b��3e3i�

�0
0 h��2e−2i� d2

��e−i� E3�− g d3��ei� h��2e2i�

�0
0 c��2e−2i� d3

��e−i� g� E1�+ d2��ei� c�2e2i�

�−1
0 b��3e−3i� k��2e−2i� d3�

��e−i� d2�
��e−i� E3�− d1��ei�

�−2
−2 a��4e−4i� b���3e−3i� h���2e−2i� c��2e−2i� d1�

��e−i� E1�

. �A1�

The diagonal elements of the matrix �A1� and the ele-
ments c�2e2i� and a�4e4i� arise from the electrostatic Hamil-

tonian Ĥes. The parameter c represents the vibronic coupling
of the 1� state and the 1�+ state in second order of the

bending displacement. The parameter a represents the
fourth-order Renner-Teller coupling within the 1� state. All
other matrix elements of Eq. �A1� arise from the SO
operator.

FIG. 6. �Color online� Energy-level correlation diagram of the spin-vibronic energy levels of the 3�− and 1� electronic states of a Renner-Teller active mode
of � symmetry, calculated for selected cases of SO-induced vibronic coupling for the following parameter values: �a� �a /�=0; c /�=0; � /�=0; g /�=0;
d� /�=0; d /�=0; b /�=0�, �b� �a /�=0; c /�=0; � /�=0; g /�=2.0; d� /�=0; d /�=0; b /�=0�, �c� �a /�=0; c /�=0; � /�=0; g /�=2.0; d� /�=0.6; d /�
=0.6; b /�=0�, and �d� �a /�=0; c /�=0; � /�=0; g /�=2.0; d� /�=0.6; d /�=0.6; b /�=0.04�. The calculation of the energy levels assumes that E1=1.5� and
E2=1.6�. Only the spin-vibronic energy levels arising from the �=0 and 1 harmonic-oscillator levels of the 3�− and 1� electronic states are presented in the
figure. The solid, long-dash dotted, short-dash dotted, and short-short dotted lines represent energy levels with =0, 1, 2, and 3, respectively.
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We include only the lowest-order nonvanishing contribu-
tion for each matrix element and ignore SO corrections to
matrix elements of the electrostatic Hamiltonian. It can be
shown by explicit calculation of matrix elements with the
basis functions �14�–�19� that the coupling parameters
a ,b ,c ,d , . . . are real. The diagonal matrix elements have the
expansion

E1� = E1�

�0� + 1
2��2 + 1

24��4 + ¯ , �A2�

E3�− = E3�−
�0� + 1

2��2 + 1
24��4 + ¯ , �A3�

E1�+ = E1�+
�0� + 1

2��2 + 1
24��4 + ¯ , �A4�

where we have assumed, for simplicity, that the bending vi-
brational frequency � and the anharmonicity parameter � are
the same in the three electronic states arising from the �2

configuration.
Requiring the vanishing of the commutator of the Hamil-

tonian matrix �A1� with the time-reversal operator �24�, we
obtain the relations b�=−b, d1�=−d1, d2�=−d3, d3�=−d2,
h�=h, and thus,

Hel = � 1
2��2 + 1

24��4�1 + �
E1�

�0�
d1�ei� h�2e2i� c�2e2i� b�3e3i� a�4e4i�

d1�e−i� E3�−
�0�

d2�ei� d3�ei� k�2e2i� − b�3e3i�

h�2e−2i� d2�e−i� E3�−
�0�

g − d2�ei� h�2e2i�

c�2e−2i� d3�e−i� g E1�+
�0�

− d3�ei� c�2e2i�

b�3e−3i� k�2e−2i� − d2�e−i� − d3�e−i� E3�−
�0�

− d1�ei�

a�4e−4i� − b�3e−3i� h�2e−2i� c�2e−2i� − d1�e−i� E1�

�0�

� . �A5�

The matrix �A5� can be further simplified by the explicit
calculation of matrix elements of the SO operator of Eqs.
�4�–�6� with the electronic basis functions �14�–�19�. It is

convenient to write ĤSO as an expansion in the bending am-
plitude �,

ĤSO = ĤSO
�0� + ĤSO

�1� + ĤSO
�2� + ¯ . �A6�

The leading term can be written as

ĤSO
�0� = ��S1 · K1 + S2 · K2� , �A7�

with

� = 1
2 ig	e

2,

K1 = − 	
n

Qn

r1n
3 �r1n � �1� +

1

r12
3 �r12 � ��1 − 2�2�� , �A8�

K2 = − 	
n

Qn

r2n
3 �r2n � �2� +

1

r21
3 �r21 � ��2 − 2�1�� .

The higher-order terms can analogously be written as

ĤSO
�1� = ��S1 · L1 + S2 · L2� ,

ĤSO
�2� = ��S1 · Q1 + S2 · Q2� , �A9�

ĤSO
�3� = ��S1 · R1 + S2 · R2� .

The operators Lk, Qk, and Rk, k=1,2, are differential op-
erators in electronic coordinate space and can be obtained
from the Kk by somewhat lengthy calculations.

It is obvious that the parameter k in Eq. �A5� vanishes by
spin integration, since the basis functions differ in two spin

orbitals, while ĤSO is a single-particle operator in spin space.
It is straightforward to show that the matrix element

h�2e2i� = ��0
0�ĤSO

�2���−2
−2� �A10�

vanishes by spin integration. For the matrix element

��+1
0 �ĤSO

�1���0
0� = d2�ei�,

it can be shown that

��0
0�ĤSO

�1���+1
0 �� = − ��+1

0 �ĤSO
�1���0

0� .

Since Ĥel must be Hermitian, this implies d2=0. With the
simplified notation d1=d, d3=d�, we have the Hamiltonian of
Eq. �25�.
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APPENDIX B: VIBRATIONAL MATRIX ELEMENTS OF
THE VIBRONIC MOLECULAR HAMILTONIAN Ĥ
IN THE BASIS SET OF THE TWO-DIMENSIONAL
ISOTROPIC HARMONIC OSCILLATOR

�n,l�d����e�i��n + 1,l 
 1� = d���� 1
2 �n 
 l + 2��1/2,

�n,l�d����e�i��n − 1,l 
 1� = d���� 1
2 �n � l��1/2,

�n,l�T̂N + 1
2��2�n,l� = ���n + 1� ,

�n,l�c�2e�2i��n + 2,l 
 2� = c�� 1
2�2�n 
 l + 2�

��n 
 l + 4��1/2,

�n,l�c�2e�2i��n,l 
 2� = 2c�� 1
2�2�n � l��n 
 l + 2��1/2,

�n,l�c�2e�2i��n − 2,l 
 2� = c�� 1
2�2�n � l��n � l − 2��1/2,

�n,l�b�3e�3i��n + 3,l 
 3� = b�� 1
2�3�n 
 l + 2��n 
 l + 4�

��n 
 l + 6��1/2,

�n,l�b�3e�3i��n + 1,l 
 3� = 3b�� 1
2�3�n 
 l + 2�

��n 
 l + 4��n � l��1/2,

�n,l�b�3e�3i��n − 1,l 
 3� = 3b�� 1
2�3�n � l��n − l � 2�

��n + l 
 2��1/2,

�n,l�b�3e�3i��n − 3,l 
 3� = b�� 1
2�3�n � l��n � l − 2�

��n � l − 4��1/2,

�n,l�a�4e�4i��n + 4,l 
 4� = a�� 1
2�4�n 
 l + 2��n 
 l + 4�

��n 
 l + 6��n 
 l + 8��1/2,

�n,l�a�4e�4i��n + 2,l 
 4� = 4a�� 1
2�4�n � l��n 
 l + 2�

��n 
 l + 4��n 
 l + 6��1/2,

�n,l�
1

4!
��4�n,l� = �� 1

2�4�n − l + 2��n − l + 4� ,

�n,l�a�4e�4i��n,l 
 4� = 6a�� 1
2�4�n � l��n � l − 2�

��n 
 l + 2��n 
 l + 4��1/2,

�n,l�a�4e�4i��n − 2,l 
 4� = 4a�� 1
2�4�n � l��n � l − 2�

��n � l − 4��n 
 l + 2��1/2,

�n,l�a�4e�4i��n − 4,l 
 4� = a�� 1
2�4�n � l��n � l − 2�

��n � l − 4��n � l − 6��1/2.
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