Nitric Oxide Dynamics in Truncated Hemoglobin: Docking Sites, Migration Pathways, and Vibrational Spectroscopy from Molecular Dynamics Simulations

Sabyashachi Mishra and Markus Meuwly*
Department of Chemistry, University of Basel, Basel, Switzerland

ABSTRACT Atomistic simulations of nitric oxide (NO) dynamics and migration in the trHBn of Mycobacterium tuberculosis are reported. From extensive molecular dynamics simulations (48 ns in total), the structural and energetic properties of the ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. Several novel migration and exit pathways are found and are analyzed in detail. The interplay between a hydrogen-bonding network involving residues Tyr33 and Gln58 and the bound O2 ligand is discussed and the role of Phe62 residue in ligand migration is examined. It is found that Phe62 is directly involved in controlling ligand migration. This is reminiscent of His64 in myoglobin, which also plays a central role in CO migration pathways. Finally, infrared spectra of the NO molecule in different ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. The pocket-specific spectra are typically blue-shifted by 5–10 cm$^{-1}$, which should be detectable in future spectroscopic experiments.

INTRODUCTION

In recent years, the microbial hemoglobins (Hbs) have received much attention due to their wide range of functions in microorganisms (1,2). Three groups of Hbs have been identified in microorganisms, namely, flavohemoglobins (FHbs), single domain Hbs, and truncated Hbs (trHbs) (3). The FHbs contain a globin domain with a classical three-over-three α-helical structure and an additional flavin-containing reductase domain covalently attached to it. While the single domain Hbs share high sequence and structure homology with the globin domain of the FHbs, the trHbs, on the other hand, are much smaller with ≈110–140 amino-acid residues and exhibit a two-over-two α-helical structure (3–10).

The trHbs are phylogenetically divided into three groups—group I (trHBn); group II (trHBo); and group III (trHbp) (3)—which are 20–40 amino-acids shorter than the mammalian Hbs due to the presence of several shortened α-helices in trHbs. However, the residue deletions, insertions, and replacements relative to the vertebrate globin structures are distributed throughout the globin chain. The trHbs host the heme in a two-over-two α-helical sandwich based on four helices, corresponding to the B, E, G, and H helices of the classical globin fold. The B/E and G/H helix pairs run antiparallel and surround the heme group to keep the latter safe from solvents. As compared to the classical globin fold, the trHbs show a drastically shortened A helix (absent in some cases, e.g., group III trHB). The D helix of classic globin fold is usually absent and the proximal F helix is almost completely replaced by an extended pre-F helix. The stabilization in the shortened helices to build a properly structured heme crevice is provided by three glycine-based motifs in group I and II trHbs (7).

Pesce et al. (10) and Milani et al. (11,12) have analyzed the crystal structures of several group I trHbs, including the crystal structure of group I trHB of Mycobacterium tuberculosis, which is the primary focus of this work. One in every three human beings in today’s population is latently infected with Mycobacterium tuberculosis (13,14), the causative agent of tuberculosis. It is now widely believed that the microorganism overcomes the toxicity of nitric oxide (NO) by converting it to harmless nitrates (15,16).

The trHBn of Mycobacterium tuberculosis has a dimeric assembly. The dimer has an elongated shape, positioning the two hemes 22 Å apart. The interface area between two trHBn chains is ≈310 Å2 (11). The crystal structure reveals the presence of an almost continuous tunnel through the protein matrix connecting the heme distal pocket to the protein surface at two distinct sites (11). The tunnel is composed of two orthogonal branches, stretching 20 Å and 8 Å from the respective access sites to the heme ligand site, and has a diameter of 5–7 Å, thus covering a volume of ≈330–360 Å3 (11). The crystal structure of trHBn with Xe atoms under pressure shows eight Xe atoms with different occupancy levels, three of which fall in the shorter branch of the tunnel and two in the longer branch of the tunnel (12).

There have been a number of experimental studies devoted to the spectroscopic aspects of several diatomic ligands (CO, O$_2$, NO, and CN) binding to the trHBn in Mycobacterium tuberculosis (15,17–20). These authors have studied several mutants of the wt-trHBn and have proposed that the ligand binding is largely controlled by a pair of interacting amino acids (Gln58 and Tyr33) in the heme active site by participating in M. tuberculosis.
in H-bonding with the heme-bound diatomic O$_2$ ligand. In addition to the spectroscopic investigations, there exist several kinetic studies on ligand binding to trHbN (9). In trHbN, the O$_2$ binding is faster by a factor of two compared to sperm whale Mb whereas O$_2$ dissociation is two-orders-of-magnitude slower in trHbN, due to the presence of a tunnel in the trHbN for a faster ligand diffusion to the heme active site and the presence of ligand stabilizing residue Tyr33 (15). It has also been shown that the ligand binding is much faster in group I trHbs compared to the group II trHbs, which lack a tunnel for ligand diffusion (5).

Nitric oxide has been found to play a pivotal role in various physiological processes such as neurotransmission, regulation of vasodilation, inhibition of mitochondrial respiration, and immune response to bacterial infection (21,22). Overproduction of NO is potentially toxic (23). Important biological functions of NO involve its interaction with metal centers of heme and other metal-containing proteins (24). Additionally, nitric oxide is also known to participate in the reaction with superoxide to form peroxynitrite, the moiety that triggers several reactions such as lipid peroxidation, DNA damage, or thiol oxidation (25). For heme proteins, NO is a special ligand as it binds to both ferrous and ferric iron on the picosecond timescale in a variety of proteins including nitric oxide synthetase, guanylate cyclase, hemoglobin, and myoglobin (24,26).

From crystallographic studies, it is proposed that residue Phe62 exists in two conformations. In one, the benzene side chain of the residue blocks the longer channel of the tunnel path (the so-called closed state) and in the other it does not (the open state) (11,12). By long MD simulations (0.1 μs), Bidon-Chanal et al. have proposed that in deoxy-trHbN, the Phe62 adopts the closed conformation and hence the O$_2$ ligand enters the protein via the short channel. In case of oxygenated trHbN, the Phe62 prefers the open conformation, thus facilitating the entrance of the second ligand (NO) via the long channel (27,28).

The active sites of heme proteins are often buried inside the globin chain, which prevents direct contact with solvent. Therefore, the ligand has to trace its way to the heme by traversing through the globin chain. The driving force underlying the ligand migration is commonly believed to be due to thermal fluctuations of the proteins (29). The migration pathways and ligand access sites are located in, most likely, evolutionarily optimized well-defined regions of proteins that can be identified with systematic experimental and computational efforts (30). With the development of time-dependent crystallographic methods, it is now possible to investigate the time evolution of the ligand distribution after flash photolysis of heme-bound ligand (31–34). While such experimental methods are yet to be used routinely, computer simulations have complemented our understanding of ligand migration pathways, for example, in myoglobins by the so-called ligand implicit sampling method (35). In ligand implicit sampling, locating ligand migration pathways is based on a free-energy perturbation approach applied to simulations of the dynamical fluctuations of the protein in the absence of a ligand. The method provides complete three-dimensional maps of the potential of mean force for ligand placement anywhere in the protein. By using this method, several novel possible exit pathways have been suggested for myoglobin (35). The idea underlying potential of mean force-based implicit ligand sampling is the fact that diatomic ligands, often approximated as apolar, only interact weakly with the protein, and hence their impact on conformational changes of the protein are approximated as a small perturbation or even neglected. This approximation is, however, vulnerable when the ligand is either charged or possesses significant higher multipole moments, as is the case for CN$^-$ or NO. In such cases, an explicit ligand sampling of the protein is required.

It is well known that NO can rapidly diffuse through the protein matrix (36), can easily cross membranes (37), and has a small barrier to escape to the bulk solvent (38). Hence, it can be used as a probe to explore the interior of proteins, such as active site conformational changes, ligand docking sites, or solvent-accessible regions. Moreover, since the molecule has an appreciable dipole moment, the NO stretching frequency can also be used as a spectroscopic probe. Unfortunately, because of its weak absorption cross section and spectral overlap with the amide bands (when it is bound to ferrous heme), measuring the NO stretching vibration has always remained a challenging experimental problem (39–42). Under such circumstances, computational investigations of NO in the protein environment are of considerable interest (26,43).

In this work, we use the NO ligand as a structural and spectroscopic probe for the trHbN of M. tuberculosis and employ the recently developed three-point fluctuating charge model for NO (43) and a suitable Morse potential for the N-O bond. The three-point fluctuating charge model, obtained by fitting to high-level ab initio dipole and quadrupole moments, provides an accurate description of the electrostatic interactions between the ligand and the protein environment by correctly describing the variation of the multipole moments of the ligand as a function of its bond length (43).

COMPUTATIONAL METHODS

The initial structure of the protein is the x-ray crystal structure (Protein Data Bank entry 1IDR) and only monomer A of this homodimeric protein is considered in this study. Hydrogen atoms are added and the internal coordinates are built by using the appropriate modules of the CHARMM program (44). The protein contains 131 amino-acid residues, a prosthetic heme group as well as O$_2$ and NO ligands. All histidine residues are treated as δ-protonated. The heme group is covalently bound to the N of residue His31 and the dioxygen molecule is ligated to the Fe$^{3+}$ atom of the heme group, while the NO ligand remains unbound. A water box with dimension 62.1 × 52.8 × 68.3 Å3 is used to solvate the protein. The water molecules are represented via the modified TIP3P potentials (45). The water box was heated and equilibrated for 50 ps at 300 K before the protein was solvated. After deleting the
NO Migration in Truncated Hemoglobin

other interactions are treated with the CHARMM22 force field (46). The dissociated NO molecule is used to describe the electrostatics of NO. All the locations of the NO ligand in these structures of the protein by taking snapshots when the NO ligand is in one of the Xe1–Xe5 pockets and in the proximal docking site (PDS) (see Fig. 1 for the corresponding Xe pocket indices. The sphere-labeled PDS indicates the ligand centered point-charge model in the sense that the latter are the 0th order expansion terms of the electrostatic potentials of the electron-density distribution. The expansion converges by considering the higher order expansion terms, which are essentially the higher order multipole moments of the ligand molecule. The charge model employed in this work is accurate up to the NO-quadrupole moment and thereby has the additional advantage of providing a more realistic description of the electrostatic interactions between the ligand and the protein environment. While the van der Waals parameters for the NO ligand are taken from Meuwly et al. (49), the N-O bond is described by a Morse potential,

\[V_M = D_e[1 - \exp(-\beta(r - r_e))]^2, \]

with dissociation energy \(D_e = 152.6 \text{ kcal/mol} \), \(\beta = 2.636 \text{ Å}^{-1} \), \(r_e = 1.151 \text{ Å} \), \(a_0 = -6.3 \text{ e} \), \(a_1 = 11.5 \text{ e Å}^{-1} \), \(a_2 = -7.3 \text{ e Å}^{-2} \), \(a_3 = 1.6 \text{ e Å}^{-3} \), \(a_0 = -10.7 \text{ e} \), \(a_1 = 19.0 \text{ e Å}^{-1} \), \(a_2 = -11.4 \text{ e Å}^{-2} \), \(a_3 = 2.4 \text{ e Å}^{-3} \), \(a_{CoM} = q_N + q_O \)

Nonbonded parameters (N) \(\epsilon_N = 0.20 \text{ kcal/mol}, r_N = 2.00 \text{ Å} \)

Nonbonded parameters (O) \(\epsilon_O = 0.16 \text{ kcal/mol}, r_O = 2.05 \text{ Å} \)

The Morse potential, the atomic (fluctuating) charges, and the nonbonded parameters (the van der Waals well depth \(\epsilon \) and radii \(r_e \)) are taken from the literature (43,49,50), respectively.

The infrared absorption spectrum of the NO molecule is calculated by

\[\Delta G(q) = -k_B T \ln P(q), \]

where \(k_B \) is the Boltzmann constant \((1.9875 \times 10^{-3} \text{ kcal/mol K})\) and \(T \) is the temperature in Kelvin.

The free-energy profile along a progression coordinate \(q \) is estimated from the probability distribution \(P(q) \) via the relation

\[A(\omega) = \omega \left[1 - \exp \left(-\frac{\hbar \omega}{k_B T} \right) \right] C(\omega), \]

where \(C(\omega) \) is the Fourier transform of the dipole-dipole autocorrelation function,

\[C(t) = \frac{\langle \vec{\mu}(0) \cdot \vec{\mu}(t) \rangle}{\langle \vec{\mu}(0)^2 \rangle}. \]

obtained from the dipole moment time series of the NO molecule accumulated from a given trajectory. For further details on the calculation of infrared spectra, see Nutt and Meuwly (51).

RESULTS

Characterization of the ligand docking sites

The crystal structure of trHbN exhibits a continuous tunnel through the protein matrix with two perpendicularly placed channels. One end of each of the channels opens to the solvent while the other toward the heme. The entrance of the longer channel (channel I) is defined by residues Ile19, Ile25, Val28, and Leu102 whereas the entrance of the shorter channel (channel II) is surrounded by residues Phe91,

![Figure 1: Ribbon representation of trHbN showing the structural elements. The heme group is shown with sticks and the ligand docking sites are shown by spheres. The docking sites are labeled according to the corresponding Xe pocket indices. The sphere-labeled PDS indicates the ligand docking site in the proximal side of the heme group, which is not seen in the crystallographic study of Milani et al. (11). The Phe92 residue, which acts as a gate for ligand migration from Xe5 pocket to Xe1 pocket, is shown with black sticks.](image-url)
Ala95, Leu116, Ile119, and Ala120. All residues defining the tunnel entrances and their inner surface are apolar. From Xe-pressurized protein samples three docking sites along channel II (the Xe2, Xe3, and Xe4 pockets) and two docking sites along channel I (the Xe1 and Xe5 pockets) were found (12). In addition to these five Xe pockets, these simulations reveal the presence of an additional stable docking site (called proximal docking site: PDS) situated in the proximal side of the heme group in trHbN. A schematic diagram showing the Xe pockets and the PDS site in the trHbN is given in Fig. 1.

The cumulative probability distribution of the NO molecule in the three Cartesian planes from all 24 trajectories is shown in Fig. 2. The average heme plane is in the xy plane and the origin is at the center of mass of the four N atoms of the porphyrin ring of the heme group. In the two-dimensional projection of the ligand density distribution, some of the ligand docking sites overlap. In the xy plane, the Xe2 pocket (due to its proximity to the heme group) and the Xe3 pocket can be distinguished from other pockets. However, a distinction between the Xe1 and Xe5 pockets is difficult in the xy plane. In the xz plane, however, the Xe1 and Xe5 pockets can be differentiated. The spatial proximity of the Xe2 and the Xe1 pocket is best seen in the yz plane (Fig. 2).

For a spatial description of the probability distribution of the NO ligand from all simulations, Fig. 3 shows a three-dimensional probability density of the NO ligand in trHbN shown in its crystal structure conformation. While the density of the ligand is shown by mesh, the heme group, the bound O\textsubscript{2}, the proximal His81, and the Phe62 residues are shown by sticks. In the three-dimensional projection, the ligand docking sites as well as their relative positions

FIGURE 2 Contour plots in the xy, xz, and yz planes showing the probability distribution of the NO ligand from all the simulations. The heme plane is along the xy plane and the origin is shifted to the center of mass of the four N atoms of the porphyrin ring of the heme group. The ligand situated in different Xe pockets are labeled. The population of Xe4 pocket is too low to appear in the figure.

FIGURE 3 Three-dimensional view of the probability distribution of the NO ligand during the entire period of simulation. The heme group, proximal His81, bound O\textsubscript{2}, and Phe62 are shown and the ligand docking sites are indicated. The population of Xe4 pocket is too low to appear in the figure. The figure is prepared using Surfplot software (67).
and the degree of overlap with each other are discernible. In the distal side of the heme group, nearest to the bound O₂ ligand is the Xe₂ pocket. The Xe₅ and Xe₁ pockets show overlapping density, which reflects the continuity of channel I. The Xe₄ pocket has negligible ligand density in these simulations, since the ligand upon arrival at the Xe₄ pocket rapidly diffuses to bulk solvent via the opening of channel II. The Xe₃ pocket is spatially close to the Xe₂ and Xe₅ pockets. The ligand docking site in the proximal side of the heme group and close to the His₈₁ ring is the proximal pocket, which is not seen in crystallographic studies (11,12) and earlier simulations.

Fig. 4 shows the time evolution of the x-, y-, and z coordinates of the N atom of the NO molecule in four representative trajectories. For this purpose, the entire protein was reoriented so that the least-squares plane containing the four nitrogen atoms of the heme group lies in the xy plane, with the center-of-mass of the four nitrogen atoms placed at the origin. In the trajectory shown in Fig. 4 a, the NO ligand is initially in the Xe₁ pocket. The ligand is found to move very rapidly from the Xe₁ pocket to the Xe₅ pocket and remains there briefly (for <10 ps) before returning to the Xe₁ pocket. This process is completed within the first 50 ps of the simulation. Afterwards, the NO ligand remains in the Xe₁ pocket for ~1 ns, then proceeds toward the Xe₃ pocket via an intermediate site (IS₁) between helices G and H (see Fig. 4 b). At ~1800 ps, the ligand migrates to the Xe₄ pocket and further moves along channel II. In the trajectory shown in Fig. 4 b, the NO ligand starts from the Xe₂ pocket. The ligand remains in the Xe₂ pocket for ~500 ps and then proceeds to the Xe₁ pocket. After this, rapid transitions between Xe₁ and Xe₃ pockets occur.

Finally, via the intermediate site between helices G and H (IS₁), the ligand moves to the Xe₄ pocket and from there it escapes to the bulk water. In the example trajectory shown in Fig. 4 c, the ligand starts from the Xe₃ pocket and rapidly moves toward the Xe₂ pocket (along channel II). The ligand is then found to make several transitions between the Xe₂ and Xe₁ pockets. During the last 400 ps of the simulation, the ligand remains in IS₁. In the last trajectory (Fig. 4 d) the ligand is initially in the Xe₅ pocket and the ligand movement in this trajectory is primarily restricted to channel I (i.e., Xe₅ and Xe₁ pockets; see Fig. 4 d). In several of the calculated trajectories (i.e., 14 out of 24), the ligand escapes to the bulk solvent in <2 ns.

The primary ligand docking sites, their distance from the Fe atom of heme, the residues surrounding the docking sites, and the connectivity of the docking sites with other docking sites are given in Table 2.

The Xe₁ pocket connects the Xe₅ pocket with the entrance of channel I. Starting from the Xe₁ pocket, the ligand migrates along three primary pathways: 1), to the Xe₅ pocket; 2), toward the opening of channel I; or 3), toward the Xe₃ pocket. The transfer of the ligand from the Xe₁ pocket to the Xe₅ pocket is assisted by the rotation of the phenyl ring of Phe₆₂ residue. From Xe₁ to Xe₃, the ligand moves via the intermediate site (IS₁) in between the helices G and H of trHbN. This intermediate site is surrounded by Ala₉₅, Leu₉₈, Ala₉₀, Ile¹¹₂, Ile¹¹₅, and Leu¹¹₆ amino acids. The NO ligand is found to traverse this region of the protein, which connects the Xe₁ pocket in channel I with the Xe₃ and Xe₄ pockets in channel II, in several trajectories.

Xe₂ pocket is the closest docking site in the distal side of the heme group and hence is crucial for ligand rebinding and ligand chemistry such as oxidation of NO. Xe₂ pocket is the intersection of channels I and II. Starting from the Xe₂ pocket, the ligand can either move along channel II to the Xe₃ pocket

Biophysical Journal 96(6) 2105–2118
or along channel I to the Xe5 pocket. In addition, we also observed less frequent transitions from the Xe2 pocket to the Xe1 pocket. In some cases, the ligand from the stable Xe2 pocket was also found to move toward the C helix and escape to the bulk water via an exit pathway situated between helices C and F, and surrounded by Phe46, Thr49, Met51, and Leu54 residues. The ligand remains in the Xe2 pocket for a longer period of time as compared to the other docking sites of the protein. This supports the proposal for multiligand chemistry taking place in the active site of the protein (16,52).

The Xe3 pocket, situated in the midway of channel II, has close access to bulk water and connects pockets Xe2 and Xe4. The ligand from the Xe3 pocket can move toward the Xe2 and Xe4 pockets along channel II or can move toward IS1 before reaching Xe1. In some cases, the ligand is found to move directly from the Xe3 pocket to the Xe1 pocket. Since the ligand spends typically a few tens of picoseconds in Xe3 pocket, this site is considered to be metastable. This is in agreement with the crystallographic observation that the Xe3 pocket is not a well-defined pocket in the A monomer of the trHbN dimer (12).

Starting from the Xe4 pocket, the ligand either moves along channel II toward the Xe3 pocket or escapes to the solvent. In addition to the movement along channel II, the ligand from Xe4 pocket is also seen to move toward IS1. The Xe5 pocket is found in between the Xe1 and Xe2 pockets along channel I. From the Xe5 pocket, the ligand travels along channel I either toward the Xe1 pocket or toward the Xe2 pocket. Additionally, the ligand from the Xe5 pocket is also found to proceed to the bulk water via a region between the helices E and F, surrounded by Pro71, Tyr72, Phe62, Ala65, and Leu54 residues.

The PDS is extremely stable and the ligand exhibits no migration from this pocket during our 8 ns of simulation of the protein with NO in this pocket. The ligand in this docking site is surrounded by hydrophobic residues and has very little probability to escape the docking site.

Summarizing all ligand migration pathways from the simulations leads to a connectivity diagram for NO ligand transfer in trHbN, which is shown in Fig. 5. Although the apolar channels are the most preferred pathways for the ligand migration, the NO ligand does follow pathways in addition to the two channels, e.g., the transitions between Xe3/Xe2 and Xe1, and transitions between Xe4/Xe3 and Xe1 via IS1. There exist at least four different pathways via which the ligand can migrate through the protein to the bulk water. Two of these pathways are the openings of channels I and II, and the other two are the exit channels outside the tunnel of the protein (in between helices E and F and helices C and F).

Fig. 6 shows the free energy profile for the migration of the NO ligand in the trHbN protein matrix, estimated from the probability density of the Fe-N distance averaged over all the calculated trajectories as described in the previous section. The energy profile exhibits two distinct minima separated by a barrier of 1.2 kcal/mol. While the minimum at the lower value of Fe-N distance (~5 Å) corresponds to the Xe2 pocket and the proximal docking site of the protein, the broad minimum at the higher Fe-N distance corresponds to the Xe1, Xe3, and Xe5 pockets. These three pockets are indistinguishable in the free-energy profile along the Fe-N coordinate due to frequent transitions among these pockets that lead to a wide local minimum associated with the corresponding pockets, making an energetic distinction of these pockets along the Fe-N coordinate difficult. An energetically distinct characterization of individual docking sites can be achieved by nonequilibrium sampling methods such as umbrella sampling along some progression coordinates that can effectively distinguish the ligand docking sites.

<table>
<thead>
<tr>
<th>Pocket</th>
<th>Distance (Å)</th>
<th>Surrounding residues</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe1</td>
<td>13</td>
<td>Phe62, Ile23, Val28, Val29, Leu98</td>
<td>IS1, Xe5, Xe2, Xe3</td>
</tr>
<tr>
<td>Xe2</td>
<td>6</td>
<td>Phe32, Leu60, Ala64, Phe62, Tyr13, Gln78</td>
<td>Xe5, Xe3, Xe1, Solvent</td>
</tr>
<tr>
<td>Xe3</td>
<td>12</td>
<td>Phe46, Leu60, Ile115, Ile119, Val118, Ala65</td>
<td>Xe1, Xe2, Xe4, IS1, Solvent</td>
</tr>
<tr>
<td>Xe4</td>
<td>15</td>
<td>Met69, Phe62, Ser52, Ala64, Gly66, Ala123</td>
<td>Xe3, IS1, Solvent</td>
</tr>
<tr>
<td>Xe5</td>
<td>9</td>
<td>Phe62, Ala40, Leu60, Leu98, Ile115, Val118</td>
<td>Xe1, Xe1, Solvent</td>
</tr>
<tr>
<td>PDS</td>
<td>6</td>
<td>Ile110, Phe91, His61, Val124, Ala123, Asp120, Val126, Met77</td>
<td>Xe2</td>
</tr>
</tbody>
</table>

The averaged distance of N atom of NO to Fe when NO is in a particular docking site of the protein is given in Å.
H-bonding between O$_2$, Gln58, and Tyr33

The experimental spectroscopic and kinetic studies suggest the presence of an H-bonding network involving Tyr33, Gln58, and bound O$_2$ in the heme active site (15,17,18). Computational studies have been carried out to further characterize the H-bonding network in the heme active site for deoxy- and oxy-trHbN (28). In the following, we corroborate the experimental findings regarding the H-bonding network between the bound O$_2$ ligand and Tyr33 and Gln58 residues by analyzing the time evolution of their interactions and provide energetic estimates for these H-bonds.

Fig. 7 illustrates the H-bonding pattern from a typical MD simulation and shows the time series of the distance between 1), the O$_2$ atom (of O$_2$) and the phenolic O of the Tyr33; 2), the amide N of the Gln58 and the phenolic O of the Tyr33; 3), the phenolic O of the Tyr33 and the amide O of the Gln58; and 4), the O$_2$ of the bound O$_2$ and the amide N of the Gln58, are given for such an example trajectory. Initially, H-bonds between the O$_2$ and the phenolic O of the Tyr33, and the phenolic O of the Tyr33 and the amide O of the Gln58, are present (see Fig. 7 a). This situation is graphically illustrated in Fig. 8 a(I). After 60 ps, the phenolic O of the Tyr33 approaches the carbonyl O of the Gln58 (see the reduced bond distance in Fig. 7 c), leading to the breaking of the H-bond between the Tyr33 and the O$_2$ atom and the formation of the H-bond between the amide O of the Gln58 and the phenolic O of the Tyr33 (shown in Fig. 8 a(II)). After \approx 500 ps, the Tyr33 separates further from the O$_2$ ligand, while the amide group of Gln58 moves closer with the possibility to form an H-bond between the amide N of Gln58 and O$_2$ of the bound O$_2$ (Fig. 7 c).

The free-energy profiles, associated with the H-bonded network calculated from all 24 trajectories, are shown in Fig. 8 b. It is seen that Tyr33 exhibits two conformations with respect to the bound O$_2$ ligand, regulating the H-bond between the phenolic O of Tyr33 and O$_2$. The energy barrier between the H-bonded Tyr33-O$_2$ pair to the free Tyr33 and O$_2$ ligand is \approx 1 kcal/mol. In contrast, the energy barrier to break the H-bonding between the phenolic O of the Tyr33 and carbonyl O of the Gln58 is \approx 2 kcal/mol (see Fig. 8 b).

As shown in Fig. 8 a, the amide group of Gln58 and the phenol ring of Tyr33 are found in three different conformations that also differ in their relative orientation. The minimum found at 3 Å corresponds to the situation where the amide O of Gln58 acts as an H-bond acceptor of the phenolic H of Tyr33 and the phenolic O of Tyr33 acts as an H-bond acceptor of the amide H of Gln58 (Fig. 8 a(II)). The intermediate minimum at 4.8 Å corresponds to the situation shown in Fig. 8 a(I), in which Tyr33 participates in H-bonding to the bound O$_2$ ligand as well as with the amide group of Gln58. The conformation with the distance between the N atom of Gln58 and the O atom of Tyr33 at 6.5 Å reflects the situation where the amide group of Gln58 is engaged in H-bonding with O$_2$ of the O$_2$ ligand and Tyr33 participates in the H-bonding with the amide O of Gln58 (Fig. 8 a(III)).

Phe62 controlled ligand migration along channel I

We have analyzed the trajectories calculated in this work to discuss the opening and closing of the Phe62 gate and its effects on the ligand migration. Similar to previous studies (11,12,27,28), we find the Phe62 residue exhibiting two conformations. In one of the conformations, the phenyl ring of the residue blocks the channel I while in the other it lets the ligand move along channel I. Our simulations revealed that the Phe62 residue in the oxy-trHbN exhibits...
primarily the open conformation (probability >70%), see Fig. 9 a, where the averaged probability distribution of the dihedral angle $H_{\alpha}\text{-}C_{\alpha}\text{-}C_{\beta}\text{-}C_{\gamma}$ of Phe62 residue provides a comparison between the populations of the closed and open conformations. By analyzing individual trajectories, we found that the change in conformation is a less frequent event. The conformational change from an open state to a closed state is more rare than the opposite, indicating the presence of a larger energy barrier for an open-to-closed transition. This is verified from the free energy profile calculated for the ring torsion of the Phe62 residue. For the oxy-trHbN, the open state conformer is found 1.5 kcal/mol more stable than the closed conformer. The energy barrier for closed-to-open transition is ~1.2 kcal/mol whereas the reverse energy barrier is >3 kcal/mol (see Fig. 9 b).

During this simulation, the phenyl ring adopts both closed and open conformations and during the first nanosecond of the simulation, three transitions occur between the two conformations. The ligand is initially found in the Xe5 pocket, where it stays for ~240 ps before it moves along channel I toward the Xe1 pocket. During the transition of the ligand from the Xe5 pocket to the Xe1 pocket, the Phe62 residue exhibits open conformation and soon after the transition, the residue adopts the closed conformation (see Fig. 9 c at 300 ps). The ligand remains in the Xe1 pocket for next 250 ps, during which the Phe62 remains in the closed conformation. At ~475 ps, Phe62 adopts the open conformation and 5 ps later, the ligand moves along the open channel toward Xe5 pocket. This example trajectory clearly

To illustrate the ligand migration associated with the open-closed transition of the Phe62 residue, we present an example trajectory in Fig. 9, c and d, where the ligand movement and Phe62 ring torsion are visibly correlated. The time series of the dihedral angle $H_{\alpha}\text{-}C_{\alpha}\text{-}C_{\beta}\text{-}C_{\gamma}$ of Phe62 is plotted in Fig. 9 c and the time series of the x, y, and z coordinates of the NO ligand in the trajectory is plotted in Fig. 9 d. (The ligand transition between the Xe5 and the Xe1 pockets is indicated by the vertical dashed lines in Fig. 9 c and d.)
demonstrates the ligand migration being controlled by the change in the Phe62 conformation.

Infrared spectra of NO in trHbN

The harmonic (ω_e) and the fundamental (ν_e) frequency associated with a Morse potential (Eq. 1) are given by

$$\omega_e = \hbar \sqrt{\frac{2D_e}{\mu}},$$

$$\nu_e = \hbar \sqrt{\frac{2D_e}{\mu} - \frac{\hbar^2}{\mu}}.$$ (5)

With the Morse potential used in this work, the analytic fundamental and harmonic frequencies of NO are (ν_e) 1798.8 cm$^{-1}$ and (ω_e) 1830.1 cm$^{-1}$, respectively. To investigate the performance of the Morse potential used for N-O bond in the MD simulations, we calculated the infrared spectrum of an isolated NO molecule in vacuum. The resulting spectrum shows a sharp peak at 1837.5 cm$^{-1}$. The difference of 39 cm$^{-1}$ compared to the calculated fundamental frequency (ν_e) is consistent with the previous investigations for similar systems (51,53) and is related to two factors: 1), the classical treatment of the Morse potential; and 2), the use of Verlet integrator with the time step of 1 fs employed to integrate the equations of motion in the MD simulations (51,53). The experimental gas phase infrared spectrum of NO shows absorption at 1875.9 cm$^{-1}$ (50). In myoglobin, the infrared spectrum of photodissociated NO exhibits two peaks at 1857 and 1867 cm$^{-1}$ and spreads over a spectral window of 10–30 cm$^{-1}$ between 1840 and 1880 cm$^{-1}$ (39,42).

The infrared spectrum of NO in the protein environment averaged over all 24 individual trajectories is broad with extended tails to both sides of the central, most intense feature, and exhibits several peaks as shown in Fig. 10a. It spans over a spectral region of 20 cm$^{-1}$ between 1830 and 1850 cm$^{-1}$, centered around the gas phase NO absorption peak at 1837.5 cm$^{-1}$ (see dashed line in Fig. 10a). The averaged infrared spectrum shows an intense peak at 1837.5 cm$^{-1}$ with a shoulder at 1839 cm$^{-1}$. Two additional peaks with moderate-to-high intensity are seen to the red (at 1835.5 cm$^{-1}$) and blue (at 1840.5 cm$^{-1}$) side of the central peak. The position, relative intensity, and width of six Gaussian functions fitted to the spectral features of Fig. 10a are given in Table 3.

Fig. 10b shows NO-infrared spectra from four trajectories, which differ in the ligand sampling particular regions...
inside the protein. The black line is an infrared spectrum calculated from a trajectory where NO primarily remains in the Xe1 and Xe5 pockets, with occasional migration to Xe3. The red spectrum corresponds to a trajectory in which NO migrates between Xe2 and Xe4, whereas the broad and structured green spectrum corresponds to a trajectory in which the NO molecule migrates between Xe5 and Xe1, and the entrance of channel I. Finally, the blue spectrum in Fig. 10 b arises from a trajectory with the NO molecule in Xe2. This information alone is not sufficient to assign particular spectral features to specific pockets sampled. To this end, Fig. 10 c shows the averaged NO spectra when the ligand movement is restricted to a given ligand docking site. Such docking-site specific spectra provide a means for a spectroscopic identification of ligand docking sites in a protein. To achieve this, we collected the time series of the dipole moments of NO from those parts of trajectories where the ligand was localized in a given docking site from which pocket-specific spectra were obtained. By averaging over all such pocket-specific spectra from different trajectories, we obtained averaged infrared spectrum of NO ligand in particular docking sites. Since the ligand was not found in the Xe3 and the Xe4 for a sufficiently long time to calculate meaningful pocket-specific infrared spectra, the analysis is only carried out for Xe1, Xe2, Xe5, and the proximal docking site (see Fig. 10 c). By combining the information from Fig. 10, b and c, the following assignments are proposed: for NO in the Xe1 pocket, an infrared absorption occurs at 1837.5 cm$^{-1}$ (i.e., unshifted with respect to free NO), whereas the infrared absorption of the ligand in the Xe5 pocket leads to signals at 1835 and 1841 cm$^{-1}$. The ligand in Xe2 pocket shows three distinct absorption maxima located at 1834, 1839, and 1842 cm$^{-1}$. The ligand in Xe5 or Xe4 pocket shows red-shifted absorption (at <1834 cm$^{-1}$). Finally, for the NO molecule in the PDS, a blue-shifted broad infrared peak at 1847 cm$^{-1}$ is found. In conclusion, the infrared spectrum for unbound NO inside truncated hemoglobin is expected to exhibit a relatively broad (≈ 20 cm$^{-1}$) spectrum with largely unresolved bands centered around the absorption of free NO. For a spectroscopic characterization of the ligand docking sites, however, site-specific infrared spectra need to be recorded. This may also include investigation of suitably mutated proteins to block particular ligand migration pathways.

DISCUSSION AND CONCLUSIONS

By using the ligand as a probe, the present simulations have characterized the internal structure of trHbN including active site conformation, ligand migration pathways, ligand docking sites, and solvent-accessible regions. The connectivity network given in Fig. 5 shows the possible transition pathways of the ligand within the protein matrix. The tunnel system of trHbN plays an important role in determining and controlling ligand entrance, migration, and rebinding. The ligand is also seen to follow migration pathways besides the tunnel, for example, migration from Xe1 and Xe3 pocket via IS1 (see Fig. 5). In addition to the five Xe pockets found in the crystallographic study of Milani et al. (12), the present simulations find another ligand docking site in the proximal side of the heme group in trHbN. The simulations reveal four different regions of the protein from which the ligand can escape the protein matrix to the bulk water. Two of these pathways are the openings of channel I and II, surrounded by apolar residues. The other two exit channels fall outside the tunnel of the protein, accessible from the Xe2 and Xe5 pockets. While the exit pathway close to the Xe5 pocket lies between helices E and F (surrounded by Pro271, Tyr272, Phe62, Ala65, and Pro121 residues), the exit path close to the Xe2 pocket is situated between the helices C and F (surrounded by Phe96, Thr99, Met51, and Leu54). Both of these extratunnelar exit paths are surrounded by at least one polar residue, e.g., Thr, Pro, or Tyr. The exit channels surrounded by polar residues are expected to be the preferred escape channel for charged or highly polar ligands. Recently, a study involving the release of NO$_3^-$ (the product of NO detoxification) from the heme distal side to solvent finds that the polar nitrate anion does not escape the protein via the well-characterized apolar tunnels. Instead, the anion prefers a path close to the Met51 and Thr99 residues in between helices C and F (54).

The above discussion opens the possibility for competing ligand-migration pathways operating in the protein matrix. A nonpolar ligand, such as O$_2$, prefers protein channels delineated by apolar residues. On the contrary, a highly polar ligand, such as the nitrate anion (NO$_3^-$), follows exit pathways surrounded by polar residues. The three-point fluctuating charge model, employed in this work for NO, correctly describes the strong quadrupole moment of the ligand. Therefore, NO represents an intermediate case, where the ligand is neither apolar nor highly polar. In such a case, a competition between polar and nonpolar pathways is possible, as is seen in this work (see Fig. 5).

Other recent studies exploring the interior of oxy-trHbN were carried out with a grid-based MD method for fast and unsupervised exploration of protein channels (55). In this method, a precomputed grid of forces for protein conformations interact with the rigid probe (ligand). Although such an approach is computationally efficient, it ignores the influence of the ligand on the protein dynamics, which, in the present

TABLE 3 Position, intensity, and full width at half-maximum (FWHM) of the Gaussian functions describing the profile of the averaged infrared spectrum of NO in trHbN (shown in Fig. 10 a)

<table>
<thead>
<tr>
<th>Frequency (cm$^{-1}$)</th>
<th>Intensity (%)</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834.3</td>
<td>45.5</td>
<td>1.97</td>
</tr>
<tr>
<td>1835.8</td>
<td>75.5</td>
<td>2.05</td>
</tr>
<tr>
<td>1837.5</td>
<td>100.0</td>
<td>3.14</td>
</tr>
<tr>
<td>1838.9</td>
<td>90.0</td>
<td>1.88</td>
</tr>
<tr>
<td>1840.6</td>
<td>92.3</td>
<td>2.88</td>
</tr>
<tr>
<td>1842.0</td>
<td>52.0</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Biophysical Journal 96(6) 2105–2118
work, is found to be important. Consequently, this study, although it reports the presence of the exit pathway between E and F helices, failed in locating the proximal docking site, the intermediate site (IS1) between Xe1 and Xe3 pocket, and the nonpolar exit pathway (between C and F helices), shown to exist in the present work. All experimentally and computationally characterized pathways are found from a single computational model in the present study, which is not the case for previous simulations (28,54,55). The additional exit channels are expected to be important for removing the products of NO detoxification reaction from the protein matrix. Although our simulations are not sufficiently long to capture the reentrance of the NO ligand from bulk to protein, by observing four exit routes of the ligand, we anticipate that the ligand can also enter the protein matrix via these pathways. This can be verified by running long simulations with ligand outside the protein matrix. The increased number of access routes of the ligand should also increase the probability of capturing nitric oxide for efficient detoxification.

Most likely, the novel observations of the proximal docking site as well as the exit channels, besides the tunnel openings, are consequences of using an accurate electrostatic model for the ligand. The Xe pockets and tunnel branches observed from crystallographic studies suggest possible ligand migration sites within and through the protein (56). However, other and additional sites might be found from atomistic simulations. The interactions between protein residues and the ligand mutually influence their dynamics and may open additional localization sites and migration pathways. This has been previously shown for myoglobins (35,57), and this study is an additional example. In this context, it should be noted that simulations, in which the ligand location is determined implicitly from the classical molecular interaction potential (as in (27,28,52,55)), are liable to failure in capturing the novel phenomena that arise solely due to explicit interaction of the ligand with the fluctuating protein.

In this work, the presence, energetics, and dynamics of the active-site hydrogen-bonding network has been characterized explicitly. The resonance Raman spectrum of the oxy-trHbN shows the Fe-O2 stretching mode at 562 cm−1 (17,18). Upon mutation of the Tyr33 to Leu33, this peak shifted to 540 cm−1, which is the Fe-O2 stretching frequency observed in most other hemoglobins and myoglobins (17,18). One possible reason for this observation is the presence of an H-bonding between Tyr33 and the bound O2 ligand. Furthermore, a red shift of the Fe-O2 stretching frequency was seen upon Gln58Val mutation, indicating an H-bond between the bound O2 and the Gln58 residue (17,18). Finally, the kinetic and equilibrium constants for the reaction of ferrous HbN with O2 compared to those of other proteins reveal that the O2 binding is twofold faster in trHbN compared to sperm whale Mb, whereas O2 dissociation is two-orders-of-magnitude slower in trHbN. This is because of the presence of a tunnel in the trHbN for a faster ligand diffusion to the heme active site and the presence of a ligand-stabilizing residue (Tyr33) restricting ligand dissociation (15). The spectroscopic and kinetic studies thus suggest the presence of an H-bonding network in the heme active site. Previously, the existence of such a network has been indirectly characterized through Tyr33Phe and Gln58Ala mutational studies (28).

The present simulations show the presence of a dynamic H-bonding network between the bound O2 ligand and Tyr33 and Gln58 residues. From detailed analysis of the residue movements, it is concluded that the phenolic O of Tyr33 plays the role of both H-bond donor and acceptor with the amide N of Gln58. Additionally, the phenolic O of Tyr33 also participates as an H-bond donor to the amide O of Gln58. This is in contrast to previous results (28) where, from one 50-ns trajectory for oxy-trHbN, it was found that Tyr33 acts exclusively as H-bond acceptor of the amide H of Gln58 and as H-bond donor to bound O2. On the contrary, our simulations suggest that the O2 ligand acts as H-bond acceptor of both the phenolic H of Tyr33 as well as the amide H of Gln58, and the H-bond between Tyr33 and O2 is dynamic in nature. Three different conformations arising from the mutual H-bonds between these moieties have been identified (see Fig. 8 a) and energetic estimations of the involved H-bonds have been provided (Fig. 8 b). While the breaking of H-bond between O2 and Tyr33 pertains a barrier of 1.2 kcal/mol, the barriers involving the breaking of H-bonds between Tyr33 and amide N and amide O of Gln58 amounts to 1 kcal/mol and 2 kcal/mol, respectively. The H-bonds among these moieties are frequently formed and broken during simulations. The small energy barriers indicate that the H-bonds in the heme active site are not energy-demanding. The dynamic H-bonds involving small energy requirements support the ligand chemistry that takes place in the heme active site. Since the stability and mobility of the intermediates and the products of the NO detoxification process depend on the surrounding residues, the low energy barriers are desirable for accommodation of different reactive conformations that may play a role in the detoxification reaction.

The Phe62 residue situated in the helix E of the trHbN lies in a strategic position to control the ligand migration between Xe5 and Xe1 pockets along channel I. From crystallographic studies it is known that Phe62 adopts two conformations, differing by a rotation around the Cα-Cβ bond (11,12). This aspect has been further studied by MD simulations (27,28). By comparing the energy barriers associated with ligand migration along the two channels, a dual path mechanism has been postulated, stating that O2 enters the deoxy-trHbN from channel II, while NO enters the oxy-trHbN from channel I (27,28). The present simulations substantiate this observation with additional facts such as energy barrier between the two conformations and direct observation of the role of the Phe62 in ligand migration. We have estimated the energy barrier for closed-state-to-open-state transition as
moments, for several diatomic ligands (such as CO, CN) accurate electrostatic interactions including higher multipole pockets Xe1 and Xe5 along the channel I is correlated to oxy-trHbN. It has been found that ligand migration between pockets Xe1 and Xe5 along the channel I is reminiscent of His64 in myoglobin, where no permanent channel exists in the molecular structure of the protein that connects the active site to the outside, but an outward movement of the His64 imidazole side chain may transiently open a pathway through which ligands may enter or exit the distal heme cavity (58–61).

Using an anharmonic potential for the bond-stretching and accurate electrostatic interactions including higher multipole moments, for several diatomic ligands (such as CO, CN−, and NO) in myoglobin, it has been shown that the experimentally observed splittings of the ligand absorption spectrum can be understood from MD simulations (51,53, 62–64). The averaged infrared spectra of NO, calculated in this work (Fig. 10 a), is broad and extends over a spectral window of 20 cm−1 with a central intense peak at 1837.5 cm−1. The averaged spectrum is broad with tails at both sides of the maximum and exhibits several splittings; these are typically 1.5–2 cm−1. The considerable width of the spectrum is in qualitative agreement with the experimental infrared spectrum of NO in myoglobin (39,42), where both blue and red shifts of the central intense peak are observed. Similar to this spectra (see Fig. 10 a), the experimental spectra of dissociated NO in myoglobin (39,42) are broad and structured with peaks separated by a few wave numbers. As for photodissociated CO in myoglobin, these peaks most likely correspond to conformational substates which, however, have not yet been unambiguously assigned.

In addition to the averaged infrared spectra of NO, the individual spectra arising from trajectories, where ligand samples different regions of protein, are also analyzed. In recent years with the development of experimental techniques, it is now possible to record infrared spectra of ligands in specific ligand docking sites and spectroscopically characterize the docking sites of the protein (65,66). This has also been achieved in this computational work where pocket-specific NO infrared spectra have been calculated. By comparing the spectra shown in Fig. 10, a–c, the following attempt to correlate structure and spectroscopy is made: The central part of the averaged spectrum originates from NO in Xe1, Xe2, and Xe5, which are buried inside the protein and close to the heme active site. The peaks toward the red side of the averaged spectrum are primarily due to the ligand in Xe3, Xe4, and the opening of channel I. These positions are away from the heme active site and close to the surrounding bulk solvent, which gives rise to the red-shifted peaks. On the other hand, the blue-shifted tail of the averaged infrared spectrum is primarily due to the ligand in the proximal pocket, which consists of hydrophobic residues such as Ile119, Phe91, His81, Val124, Val126, Ala123, Met77, and Asp125. The polar side chain of Asp125 lies close to the surrounding solvent molecules and away from the proximal docking site, thus keeping the proximal docking site hydrophobic. The contribution of the Xe3, Xe4, and the proximal docking sites to the overall spectrum is expected to be rather minimal, whereas the overall spectrum is expected to be dominated by the ligand located in Xe1, Xe2, and Xe5.

In summary, we have studied nitric oxide migration in the trHbN of M. tuberculosis via molecular-dynamics simulation, by using a fluctuating three-point charge model and a Morse potential for the NO molecule. By analyzing the ligand probability density, we have characterized the primary ligand docking sites in the protein matrix. In addition to the five Xe pockets found in the crystallographic study of Milani et al. (12), our simulations find another ligand docking site on the proximal side of the heme group in trHbN. By studying the ligand dynamics, a connectivity network could be determined that describes transition pathways of the ligand in the protein matrix including novel migration pathways and exit channels. A structural and energetic account of dynamic H-bonding network (among Tyr33, Gln58, and bound O2) operating in the heme active site has been found and characterized and the pivotal role of Phe62 in ligand migration has been confirmed. Finally, the simulations allow prediction of the (site-specific) infrared spectra of NO in trHbN, which as yet have not been observed experimentally. The different bands of the infrared spectrum have been assigned through comparison with pocket-specific infrared spectra of NO ligand and it will be interesting to compare these findings with experiments.

The authors thank Mr. Christian Wäckerlin for helpful discussions.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

REFERENCES

