Course Outline: uncorrected and may change depending on the situation.

What we will learn? (Total available time approx 56 h, Autumn Semester 2015)

Destary	Tonio (Cybiaet (We will seven in this semester)	Cahadula
Entry	Topic /Subject (We will cover in this semester)	Schedule
		time
A	Determination of molecular structure by utilization of IR Spectra in	
	conjunction with other spectral data: A brief discussion of IR and its	
	applications covering its basic theory	5 h
	Content: Introduction: Why we need IR spectroscopy? Basic theory,	
	Hooke's Law, Simple Harmonic Oscillator and Anharmonic Oscillator,	
	characteristic functional groups, ring strain, electronic effect,	
	conjugation effects, concentration effect, etc.	
В	Mass Spectroscopy to determine molecular mass.	
	Content: Introduction: usefulness of MS (1 h). Basic theory, resolution	12 h
	(HRMS and low resolution MS), different ionization technique (CI, EI,	(3 week)
	ESI, MALDI, FAB) & their application (4h), exact mass & isotopic	
	distribution (3h), fragmentation & application (4h), DBE, etc.	
C	NMR to determine molecular structure:	
	Majority of our focus will remain on ¹ D NMR of some important nuclei:	24 h + 8
	¹ H , ¹³ C , ¹⁹ F , ³¹ P , ²⁹ Si, ¹¹ B, ¹⁴ N etc.	h
	Content: History, basic theory, electromagnetic radiation-and its	(5 + 2)
	magnetic component, EPR and its principle similarity with nmr (1 h),	week)
	magnetogyric ratio and its effect (0.5h), nmr sensitivity and its magnetic	
	field, temperature & isotopic abundance dependence, why UV and IR	Tutorial
	are more sensitive technique than NMR? (1h), nmr active and inactive	(rest of
	nuclei (1h), nmr pulses, signal recording (1h), nmr instrumentation,	the
	FID, Fourier transformation (1 h), relaxation (spin-latice and spin-spin),	classes)
	chemical shift, shielding of nucleus, nmr scale, why it is important, δ -	
	value & information extraction, nmr standard peak and solvents (3 h),	
	integration and its applications in polymer and simple molecules (2 h),	

CY51003: Spectroscopic Methods of Structure Determination (NMR, Mass, IR, UV).

By MSM, Assistant Professor, Dept. of Chemistry, IIT kgp, India.

examples and cases (**4 h**), molecular anisotropy, nmr time scale and its application in conformational analysis, trapping of conformation at lower temp., determination of enantiomeric ratio (**1 h**), ³¹P and ¹⁹F NMR and application (**1h**), 2D NMR and its application (**3 h**), **Problem solving:** NMR of simple to more complex structure (**5 h** and rest of the time), organometallic complexes (**2 h**), protein in folded and unfolded conformation (**1 h**)

References:

For IR and Mass: Books

1. Spectroscopic Identification of Organic Compounds Authors: Silverstein, R. M. and Wenster, F. X.

Fundamental of Molecular Spectroscopy
Authors: Banwell, Colin. N. and McCash, Elaine M.

3. Any other Basic book of your choice.

NMR: Books

1. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry

Author: Harald Gunther

2. Basic One- and Two Dimensional NMR Spectroscopy

Author: Horst Friebolin

3. Title: Spectroscopic Identification of Organic Compounds

Authors: Silverstein, R. M. And Wenster, F. X.

4. Any basic books on NMR Spectroscopy of your choice.